
Open Source Down to the Silicon

Technology for Global Security | June 9, 2020

HARDWARE THAT IS
LESS UNTRUSTED:

RON MINNICH

HARDWARE THAT IS LESS UNTRUSTED: OPEN-SOURCE DOWN TO THE
SILICON
RON MINNICH
JUNE 9, 2020

I. INTRODUCTION
IQ WKLV HVVa\, RRQ MLQQLcK aUJXHV ³WH caQ QRW build on a foundation that is compromised at all
OHYHOV. TKHUH LV QR YLVLbLOLW\ LQWR WKH V\VWHP¶V bHKaYLRU. TKH H[LVWLQJ PRGHO aVVXPHV SHUIHcW
VRIWZaUH: µTUXVW, bXW GRQ¶W YHULI\.¶ WH QHHG WR VWaUW aQHZ, IURP WKH JaWHV, aQG ZRUN RXU Za\ XS.´

Ron Minnich is a software engineer at Google.

The paper was prepared for the Antidotes For Emerging NC3 Technical Vulnerabilities, A
Scenarios-Based Workshop held October 21±22, 2019 and convened by The Nautilus Institute
for Security and Sustainability, Technology for Global Security, The Stanley Center for Peace
and Security, and hosted by The Center for International Security and Cooperation (CISAC)²
Stanford University.

A podcast with Ron Minnich, Philip Reiner and Alexa Wehsener can be found here

It is published simultaneously here by Technology for Global Security and here by Nautilus
Institute and is published under a 4.0 International Creative Commons License the terms of
which are found here.

Acknowledgments: The workshop was funded by the John D. and Catherine T. MacArthur
Foundation. Maureen Jerrett provided copy editing services.

The views expressed in this report do not necessarily reflect the official policy or position of
Technology for Global Security. Readers should note that Tech4GS seeks a diversity of views
and opinions on significant topics in order to identify common ground.

Banner image is by Lauren Hostetter of Heyhoss Design

II. TECH4GS SPECIAL REPORT BY RON MINNICH
HARDWARE THAT IS LESS UNTRUSTED: OPEN-SOURCE DOWN TO THE SILICON
JUNE 9, 2020

The goal of CATALINK1 is to build a more trustable system. What technical steps are required to
build a system that users trust is doing what the system says it is doing? The system must be
trusted all the way down to the transistors, and all of it must be open-source. This is inherently
difficult, as the computing world is far less open today than it was 20 years ago. Adding to the
difficulty, as we have learned in the last 10 years, those foundations have been completely
compromised and are full of security holes²some accidental and some malicious. How did we
get from the beginnings of computers to where we are today?

By far the computer type most commonly associated with computing is the so-called Personal
Computer (PC). The Personal Computer defines a computing standard based around a physical

https://soundcloud.com/tech4gs
https://www.tech4gs.org/last-chance-communicating-at-the-nuclear-brink.html
https://nautilus.org/?p=98281
https://creativecommons.org/licenses/by/4.0/
http://heyhoss.design/

form. Though these started as personal, at least a billion computers following this standard are
found in offices, data centers, automobiles, and personal electronics used around the world.

Shown below (Figure 1) is a typical PC of thH 1980¶V²a motherboard. All the chips have an
easily identified function. There is one central processing unit (CPU), memory chips, and
Input/Output (IO) chips. And, in all this hardware, there is software. This software is contained in
the larger chips with round white labels on the top, which blocks ultraviolet (UV) light from
erasing the software. The software on those chips is called firmware, since it is software that is
VWLOO WKHUH HYHQ ZKHQ SRZHU LV WXUQHG RII. FLUPZaUH LV OHVV ³KaUG´ WKaQ KaUGZaUH, since it is
cKaQJHabOH VRIWZaUH, \HW ³KaUGHU´ WKaQ VRIWZaUH, VLQcH LW LV SHUVLVWHQW ZKHQ SRZHU LV UHPRYHG
and reapplied. When this board was created, anyone could write software to go in those chips,
because all the information and resources to do so were openly available.

Figure 1. A 1980¶V PRWKHUbRaUG.

TRGa\¶V VLWXaWLRQ LV GUaVWLcaOO\ different. Shown below is a more recent motherboard (Figure 2).
Some of the smallest chips on that motherboard²1 centimeter (cm) by 1 cm²are more
complex than the entire motherboard shown above. Some of these chips contain 1,000 times as
much firmware as the motherboard shown above, and like in the motherboard above, all are
vulnerable to supply chain attacks. This firmware is difficult, if not impossible, to change once it
is installed. The source is only available under the strictest Non-Disclosure Agreements.
Moreover, there is no way to verify that the firmware on this board is doing what it should do, or
WKaW LW LV QRW GRLQJ ZKaW LW VKRXOG QRW GR. TKH PRGHO RI WKLV SURSULHWaU\ ILUPZaUH LV, ³WUXVW, bXt
GRQ¶W YHULI\.´ TKLV PRGHO KaV SURYHQ WRR LQHIIHcWLYH IRU RSHUaWLRQaO VHcXULW\.

It has been demonstrated that it is possible to attach wires to the board, trace activity, and
reverse engineer the software from those activity traces2. From there, it is not a significant leap
to inserting malicious software. It would be even easier to modify the software somewhere in the
supply chain; for instance, when the software is written, the board is built, or the board is en
route to the final customer. Modifying software in this manner is called a supply chain attack.

Figure 2. A modern motherboard.

While there are many CPUs on this board, the most well known is the main CPU²the x86. The
x86 is the most visible to the user, because it runs Windows or Linux, which in turn run all the
applications users use. The x86 has firmware, called UEFI, which is as complex in many ways
as Linux or Windows. UEFI is generally only released in binary form, and hence unverifiable:
³TUXVW, bXW GRQ¶W YHULI\.´ MaQ\ VHcXULW\ UHVHaUcKHUV KaYH GHcRGHG UEFI IRU IXQ, KRZHYHU, aQG
cULPLQaOV KaYH OLNHZLVH GRQH VR IRU SURILW. A VHaUcK IRU ³UEFI H[SORLWV´ UHYHaOV aQ aVWRXQGLQJ
204,000 results. As a result, in any given week there are many active exploits, some of the most
recent being this year.3

We can not build on a foundation that is compromised at all levels. There is no visibility into the
V\VWHP¶V bHKaYLRU. TKH H[LVWLQJ PRGHO aVVXPHV SHUIHcW VRIWZaUH: ³TUXVW, bXW GRQ¶W YHULI\.´ WH

need to start anew, from the gates, and work our way up. But what does this new model look
like?

Shown below (Figure 3) is a new board called the Hi-Five, from SiFIve. SiFive is a new startup
which is desiJQLQJ aQG VHOOLQJ RISCV (SURQRXQcHG ³ULVN ILYH´) CPUV. RISCV LV aQ RSHQ,
unlicensed architecture, which means that companies wishing to build RISCV chips do not need
to pay a license fee or ask permission. RISCV is a specification managed by the RISCV
foundation, originally based in the United States and now based in Switzerland. The RISCV
specification is a definition of how the CPU has to work and not a CPU itself. Other companies
such as Nvidia, Western Digital, and SiFive build the CPU itself. Today, there are also open-
source implementations of RISCV available at places like GitHub.

Figure 3: Hi-Five motherboard.

Open-source CPUs do not benefit from the 50 years of continuous performance gains achieved
in the proprietary world. The HiFive board costs $1,000, compared to a nearly ten times more

powerful x86 board that costs a mere $30. When compared to proprietary systems, the open-
source performance-to-price ratio is 300 times less.

Note that RISCV is not behind in every way; far from it. RISCV processors, being new, can be
designed to avoid the kind of security problems that have plagued older CPUs in recent years.
They have extremely low power consumption, and are arguably more power efficient than even
ARM4, which makes them practical for CATALink; a modern x86 processor is too power-hungry
and hot. Because there is not a per-core license, and the cores are so compact, RISCV
processors are not artificially constrained to small numbers of cores -- a recent system has 1049
cores, far more than any x86 processor offers today. Finally, there are some very cheap low-
end RISCV 32-bit systems available today; in one case, one can buy a board for five dollars
($5)5! All that said, however, the highest-throughput RISCV CPU is at least 10x slower than a
medium-throughput x86.

To effectively and efficiently run on RISCV, software needs to accommodate itself to constraints
QRW VHHQ VLQcH WKH HaUO\ 2000¶V. CATALINK VRIWZaUH QHHGV WR bH HIILcLHQW aQG WKULIW\. TKHUHIRUH,
we will need new software to accommodate these old constraints.

The requirement to write new software, rather than just taking what exists today, is an
advantage. This process will give us a chance to write software designed for security as a top
priority. Were we to simply take the RISCV hardware and drop existing software onto it, our
system might still be unreliable and insecure. The problem is that much software is written in C,
which is well known to be a problematic language when security problems are concerned.
Further, most software is written to optimize features and speed instead of security.

In addition to the hardware issues previously discussed, we need to start anew on the software
stack and consider modern programming languages with integrated safety attributes. For
example, many projects are using a new language called Rust, which has many features to
ensure safe programming, as well as minimizing the resource usage of the code. Other
languages, such as Spark6, are designed for formal verification, in which automated programs
verify that the software does what it should.

The programming language will not on its own ensure a verifiably secure system. The rules for
writing safe software are well understood, yet rarely followed. CATALINK will need rigorous
cRQWUROV WR HQVXUH VRIWZaUH ³IROORZV WKH UXOHV.´ TKHVH cRQWUROV PXVW bH aXWRPaWHG. OQH
example of automated checking demonstUaWHV KRZ WKH ³GR UHSRUW caUG,´ JHQHUaWHG b\ aQ
automated system, grades the code quality continuously7. Another automation example is the
Coverity code,8 which scans 6,700 projects for code quality.

CATALINK can build on the foundation of RISCV, which is entirely open. Starting with that
foundation, we can build new software in modern languages, such as Rust, that let us provide
the assurance that the software does what it should, and does not do what it should not.
Further, for all the components of CATALINK, ZH caQ aGKHUH WR a ³TUXVW, bXW VHULI\´ PRGHO,
which is far superior to the alternatives we have today.

III. TECH4GS INVITES YOUR RESPONSE
Technology for Global Security invites your responses to this report. Please send responses to:
info@tech4gs.org. Responses will be considered for redistribution to the network only if they
LQcOXGH WKH aXWKRU¶V QaPH, aIILOLaWLRQ, aQG H[SOLcLW cRQVHQW

IV. ENDNOTES

1 Nautilus Institute, Stanley Center For Peace and Security, and Technology for Global Security, "Last
Chance: Communicating at the Nuclear Brink, Scenarios and Solutions Workshop, Synthesis Report",
NAPSNet Special Reports, May 23,
2020, https://www.tech4gs.org/uploads/1/1/1/5/111521085/last_chance_final_report-1__1_.pdf

2 Andrew Huang, Hacking the Xbox: An Introduction to Reverse Engineering, No Starch Press, July 1
2003, updated March 2013, at: https://nostarch.com/xboxfree

3 “Through the SMM-COaVV aQG a VXOQHUabLOLW\ FRXQG TKHUH.,´ SYNACKTIV Digital Security, January 14,
2020, https://www.synacktiv.com/posts/exploit/through-the-smm-class-and-a-vulnerability-found-
there.html.

4 https://www.datacenterknowledge.com/hardware/open-source-risc-v-ready-take-intel-amd-and-arm-
data-center

5 https://www.datacenterknowledge.com/hardware/open-source-risc-v-ready-take-intel-amd-and-arm-data-
center

6 The German Spark, not the Berkeley Spark. See
[https://en.wikipedia.org/wiki/SPARK_(programming_language)].

7 U-Root/u-Root, Go (2015; repr., u-root, 2020), https://github.com/u-root/u-root.

8 ³CRYHULW\ ScaQ - SWaWLc AQaO\VLV,´ S\QRSV\V, accHVVHG Ma\ 18, 2020, https://scan.coverity.com/

https://www.tech4gs.org/uploads/1/1/1/5/111521085/last_chance_final_report-1__1_.pdf
https://nostarch.com/xboxfree
https://www.synacktiv.com/posts/exploit/through-the-smm-class-and-a-vulnerability-found-there.html
https://www.synacktiv.com/posts/exploit/through-the-smm-class-and-a-vulnerability-found-there.html
https://www.datacenterknowledge.com/hardware/open-source-risc-v-ready-take-intel-amd-and-arm-data-center
https://www.datacenterknowledge.com/hardware/open-source-risc-v-ready-take-intel-amd-and-arm-data-center
https://www.datacenterknowledge.com/hardware/open-source-risc-v-ready-take-intel-amd-and-arm-data-center
https://www.datacenterknowledge.com/hardware/open-source-risc-v-ready-take-intel-amd-and-arm-data-center
https://www.datacenterknowledge.com/hardware/open-source-risc-v-ready-take-intel-amd-and-arm-data-center
https://www.datacenterknowledge.com/hardware/open-source-risc-v-ready-take-intel-amd-and-arm-data-center
https://github.com/u-root/u-root
https://scan.coverity.com/

