
Reliability Engineering and System Safety 96 (2011) 38–52
Contents lists available at ScienceDirect
Reliability Engineering and System Safety
0951-83

doi:10.1

n Corr

E-m

ladry@i
journal homepage: www.elsevier.com/locate/ress
Designing for resilience to hardware failures in interactive systems:
A model and simulation-based approach
David Navarre n, Philippe Palanque, Eric Barboni, Jean-Franc-ois Ladry, Célia Martinie

IRIT, University Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France
a r t i c l e i n f o

Keywords:

Model-based approaches

ARINC 661 specification

Formal description techniques

Interactive software engineering

Interactive cockpits
20/$ - see front matter & 2010 Elsevier Ltd. A

016/j.ress.2010.06.028

esponding author.

ail addresses: navarre@irit.fr (D. Navarre), pa

rit.fr (J.-F. Ladry).
a b s t r a c t

The paper proposes a formal description technique and a supporting tool that provide a means to

handle both static and dynamic aspects of input and output device configurations and reconfigurations.

More precisely, in addition to the notation, the paper proposes an architecture for the management of

failure on input and output devices by means of reconfiguration of in/output device configuration and

interaction techniques. Such reconfiguration aims at allowing operators to continue interacting with

the interactive system even though part of the hardware side of the user interface is failing. These types

of problems arise in domains such as command and control systems where the operator is confronted

with several display units. The contribution presented in the paper thus addresses usability issues

(improving the ways in which operators can reach their goals while interacting with the system) by

increasing the reliability of the system using diverse configuration both for input and output devices.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Command and control systems have to handle large amounts
of increasingly complex information. Current research work in the
field of human–computer interaction promotes the development
of new interaction and visualization techniques in order to
increase the bandwidth between the users and the systems. Such
an increase in bandwidth can have a significant impact on
efficiency (for instance the number of commands triggered by
the users within a given amount of time) and on error-rate [28]
(the number of slips or mistakes made by the users).

Post-WIMP user interfaces [31] provide users with several
interaction techniques that they can choose from and provide the
possibility to exploit different output devices according to
different criteria such as, work load, cognitive load, or availability
(of the system devices). This includes, for instance, keyboard and
mouse as hardware input devices and doubleclick, drag and drop,
CTRL+click, etc. as interaction techniques. Exploiting such
possibilities calls for methods, techniques, and tools to support
various configurations at the specification level (specify in a
complete and unambiguous way the configurations, i.e. the set of
desired interaction techniques and output configurations), at the
validation level (ensure that the configurations meet the require-
ments in terms of usability, reliability, human-error-tolerance,
ll rights reserved.

lanque@irit.fr (P. Palanque),
fault-tolerance, and possibly security), at the implementation
level (support the process of going from the specification to the
implementation of the configurations in a given system), and for
testing (how to test the efficiency of the configurations and of the
re-configured system).

A recent trend in human–computer interaction addresses the
issue of dynamic reconfiguration of interfaces under the concept
of plasticity coined by J. Coutaz [15]. However, research work on
plasticity mainly addresses reconfiguration at the output level, i.e.
adapting the presentation part of the user interface to the display
context (shrinking or expanding presentation objects according to
the space available on the display). In addition, reliability issues
and specification aspects of plastic interfaces are not considered.
Work recently done with web site personalization/configuration
[16] and [29] struggle with the same concepts and constraints
even though, here again, personalization remains at a cosmetic
level and does not deal with how the users interact with the web
application. Our work differs significantly as users are pilots
following long and intensive training programme (including
on-the-fly training) and thus being trained to authorised recon-
figurations while web users passively undergo the (most of the
time unexpected) reconfigurations.

These issues go beyond current state of the art in the field of
interactive systems engineering where usually each interactive
system is designed with a predefined set of input and output
devices that are to be used according to a static set of interaction
techniques and are identified at design time. This set can
sometimes gather many different interaction techniques and
input/output devices as, for instance, in military cockpits [10].

www.elsevier.com/locate/ress
dx.doi.org/10.1016/j.ress.2010.06.028
mailto:navarre@irit.fr
mailto:palanque@irit.fr
mailto:ladry@irit.fr
dx.doi.org/10.1016/j.ress.2010.06.028


Fig. 1. KCCU (Keyboard Cursor Control Unit) for interactive cockpits taken from

Aviation Week & Space Technology (September 27, 2004).

D. Navarre et al. / Reliability Engineering and System Safety 96 (2011) 38–52 39
Current safety critical systems, for example, the cockpit of the
Airbus A380, presents 8 display units of which 4 of them offer
interaction via a mouse and a keyboard by means of an
integrated input device called KCCU (Keyboard Cursor Control
Unit, see Fig. 1). Applications are allocated to the various display
units. If one of the display units fails, then, according to
predefined criteria (like the importance of the application
according to the flight phase) the applications (displayed on
that faulty unit) are migrated to other available display units.
This paper proposes a formal description technique and a
supporting tool that provide a means to handle both static and
dynamic aspects of input and output devices configuration and
reconfiguration. The justification of using formal description
techniques is three fold:
�
 The possibility to define in a complete and unambiguous way
the behaviour of the input and output devices, the interaction
techniques, the authorised configurations, and the reconfigura-
tion mechanism.

�
 The possibility to reason about that models in order to be able

to assess the behaviour of the configurations (e.g. for all the
possible configuration a given application is always presented
to the operator while other ones might be removed from the
set of accessible applications).

�

1 Buffering capacity is defined as follows: ‘‘the size or kinds of disruptions the

system can absorb or adapt to without fundamental breakdown y

2 Flexibility is defined as follows: ‘‘the system’s ability to restructure itself in

response to external changes or pressures’’.
The possibility via the tool PetShop [9] supporting the formal
notation to interactively prototype the behaviours and to
modify and adjust them according to operator’s requirements
and global performance.

It is important to note that the purpose of the paper is
neither to provide information about the efficiency of a
configuration (with respect to other ones) nor it aims at
providing ways of assessing the validity of a configuration. The
scope is more limited as it only targets at providing a mean to
model the interactive system, to model a set of configurations,
and to model how configurations evolve according to detected
failures.

According to David Wood’s definition of resilience in [19]
(page 21 second paragraph), resilience applies to systems
adapting to unanticipated variability or perturbations. The paper
deals explicitly with processes for monitoring and managing
resilience as defined later in that paper. Indeed, it targets at
supporting the modelling and the architecture of solutions
addressing ‘‘buffering capacity’’1 even though other aspects such
as management, ‘‘flexibility’’2, y related ones are clearly beyond
the scope of this paper.

The paper is structured as follows: Section 2 briefly presents
the formal description technique called ICO. Section 3 introduces
the ARINC 661 specification and the generic software architecture
for reconfiguration before focusing on an architecture (compliant
with the ARINC 661 specification), which is able to handle
reconfigurations of both input and output devices. Section 4 is
dedicated to the configuration management. It proposes a set of
configuration-manager-models applied on a case study (in the
field of interactive cockpits). More precisely it illustrates how the
reconfigurations (that occur after a hardware failure) are rendered
on the display units. Section 5 concludes the paper and presents
an agenda for future work.
2. ICOs a formal description technique for interactive systems

The aim of this section is to present the main features of the
interactive cooperative objects (ICO) formalism that we have
proposed for the formal description of interactive systems. We
encourage the interested reader to look at [23,24] for a complete
presentation of this formal description technique.

2.1. Informal overview of ICOs

The ICO formalism is a formal description technique dedicated
to the specification of interactive systems [23]. It uses concepts
borrowed from the object-oriented approach (dynamic instantia-
tion, classification, encapsulation, inheritance, client/server rela-
tionship) to describe the structural or static aspects of systems,
and uses high-level Petri nets [18] to describe their dynamic or
behavioural aspects [6].

The ICO notation has evolved to address news challenges
raised by the various application domains it has been applied to.
This paper briefly presents the current version with the last
extensions.

ICOs are dedicated to the modelling and the implementation of
event-driven interfaces, using several communicating objects to
model the system, where both behaviour of objects and commu-
nication protocol between objects are described by the Petri net
dialect called cooperative objects (CO).

Petri nets [27] are a formalism that features a complete
equivalence between a graphical and an algebraic representation.
As classic Petri nets do not easily allow describing data, the
introduction of object Petri nets (OPN) [20] provides a means to
handle more complex data structure using the object paradigm.
Based on OPN, a cooperative object states how the object reacts to
external stimuli according to its inner state. Its behaviour, called
the object control structure (ObCS) is described by means of OPN
as shown in the case study presented in the next section.

2.2. Interactive cooperative objects formalism (ICO)

In the ICO formalism, an object is an entity featuring four
components: a cooperative object that describes the behaviour of
the object, a presentation part (i.e. the graphical interface), and



D. Navarre et al. / Reliability Engineering and System Safety 96 (2011) 38–5240
two functions (the activation function and the rendering function)
which make the link between the cooperative object and the
presentation part.

2.2.1. Cooperative object

Using the cooperative object formalism, ICO provides the
following features:
�
 Links between user events from the presentation part and
event handlers from the CO.

�
 Links between user event availability and event handler

availability.

�
 Links between state in the CO changes and rendering.

2.2.2. Presentation part

The presentation of an object states its external appearance.
This presentation is a structured set of widgets organized in a set
of windows. Each widget may be a way to interact with the
interactive system (user-system interaction) and/or a way to
display information from this interactive system (system-user
interaction). Even if the method used to render (description and/
or code) is out of the scope of an ICO specification, it is possible for
it to be handled by an ICO, viewing the presentation part as a set
of rendering methods (in order to render state changes and
availability of event handlers) and a set of user events.

2.2.3. Activation function

The user-system interaction (inputs) only takes place
through widgets. Each user action on a widget may trigger one
of the CO event handlers. The relation between user services and
widgets is fully stated by the activation function that associates
each event from the presentation part with the event handler to
be triggered and the associated rendering method for represent-
ing the activation or the deactivation:
�
 When a user event is triggered, the activation function is
notified (via the event mechanism) and asks the CO to fire the
corresponding event handler providing it values that only
come from the user event.

�
 When the state of an event handler changes (e.g. becomes

available or not), the activation function is notified and calls
the corresponding activation rendering method from the
presentation part with values for its parameters that only
come from the event handler.

2.2.4. Rendering function

The system-user interaction (outputs) aims at presenting the
state changes that occurs in the system to the user. The rendering
function maintains the consistency between the internal state of
the system and its external appearance by reflecting system states
changes:
�

3 This kind of management of input device failure could and should prevent

the typical error message on PCs when booting with a missing keyboard

‘‘Keyboard Failure strike F1 key to continue’’.
When the state of the cooperative object changes (e.g. marking
changes for a place), the rendering function is notified and call
the corresponding rendering method from the presentation
part with values for its parameters that only come from the
event handler.

ICOs are used to provide a formal description of the dynamic
behaviour of an interactive application. An ICO specification fully
describes the potential interactions that users might have with
the application. The specification encompasses both the ‘‘input’’
aspects of the interaction (i.e. how user actions impact on the
inner state of the application, and which actions are enabled at
any given time) and its ‘‘output’’ aspects (i.e. when and how the
application displays information relevant to the user).

An ICO specification is fully executable, which gives the
possibility to prototype and test an application before it is fully
implemented [23]. The specification can also be validated using
analysis and proof tools developed within the Petri net commu-
nity and extended in order to take into account the specificities of
the Petri net dialect used in the ICO formal description technique.
This formal specification technique has already been applied in
the field of air traffic control interactive applications [23], space
command and control ground systems [26], interactive military
[10], or civil cockpits [25]. The example of civil aircraft is used in
the next section to illustrate the specification of embedded
systems.

To summarize, we provide here the symbols used for the ICO
formalism and a screenshot of the tool:
�
 States are represented by the distribution of tokens into places.

�
 Actions triggered in an autonomous way by the system are

represented by rectangle boxes and called transitions.

�
 Actions triggered by users are represented by a transition with

a thicker boarder (such as the upper left transition in Fig. 2).

Fig. 2 presents a screenshot of the Petshop environment where
(1) is the design space, for models edition, (2) is the list of ICO
models for the current project, (3) is a mini-map of the ICO model
under edition, and (4) is the user interface of the project currently
executed by Petshop (this application is presented in detail in
Section 4). Modifications made to the models immediately impact
the current execution of the project. This makes it easier for the
‘‘users’’ to assess the impact of these modifications on the
behaviour of the application.
3. An architecture for reliable and reconfigurable user
interfaces

One of the aims of the work presented in this paper is to define
an architecture that supports usability aspects of safety-critical
systems by taking into account potential malfunctions in the
input (output) devices that allow the operators to provide
(perceive) information or trigger commands (perceive command
results) to the system. Indeed, any malfunction related to such
input devices might prevent operators to intervene in the
systems functioning, thus jeopardize the mission, and poten-
tially put human life at stake. In systems offering standard input
device combination such as mouse+keyboard, it is possible to
handle one input device failure by providing redundancy in the
use of the device. For instance, a soft keyboard such as the ones
defined in [21] can provide an efficient palliative for a keyboard
failure3.

This section deals with architectural concerns for handling
reconfigurations in the context of interactive cockpits complaints
with the standard ARINC 661 specification. Thus, we first very
briefly introduce this standard which defines software interfaces
of cockpit display systems. We then successively present a generic
architecture for handling reconfigurations and its refinement to
address ARINC 661 specification specificities.



Fig. 2. A screenshot of Petshop environment.

Fig. 3. Abstract architecture and communication protocol between cockpit display system and a user application.

D. Navarre et al. / Reliability Engineering and System Safety 96 (2011) 38–52 41
3.1. ARINC 661 specification

The Airlines Electronic Engineering Committee (AEEC) (an
international body of airline representatives leading the develop-
ment of avionics architectures) formed the ARINC 661 Working
Group to define the software interfaces to the cockpit display
system (CDS) used in all types of aircraft installations. The
standard is called ARINC 661—cockpit display system interfaces
to user systems [2,3].

In ARINC 661, a user application is defined as a system that has
two-way communication with the CDS (cockpit display system):
�
 Transmission of data to the CDS, which can be displayed to the
flight deck crew.

�

4 This terminology comes from the ARINC 661 specification standard. While

such wording could be questionable in the field of interactive systems engineering

we prefer to conform to the standard this work is applied to.
Reception of input from interactive items managed by the CDS.

According to the classical decomposition of interactive sys-
tems into three parts (presentation, dialogue, and functional core)
defined in [14], the CDS part (in Fig. 3) may be seen as the
presentation part of the whole system, provided to the crew
members, and the set of UAs may be seen as the merge of both the
dialogue and the functional core of this system. ARINC 661 then
puts on one side input and output devices (provided by avionics
equipment manufacturers) and on the other side the user
applications (designed by aircraft manufacturers). Indeed, the
consistency between these two parts is maintained through the
communication protocol defined by ARINC 661.
3.2. A generic architecture for user interaction reconfiguration

In comparison with the ARCH software architecture [5], we
propose the following generic extension to support configuration
definitions and reconfiguration management in the field of safety
critical application. This architecture aims at describing the
various components as well as their interrelations. As stated in
the introduction, the architecture targets resilient systems [19]
offering a continuity of interaction service despite partial failure of
an input or output device.

In order reach this goal, we propose to decompose the
interactive system into two parts: the server side4 (including
the window manager, the interaction techniques, and the
(re)configuration manager) and the application side (including
all the graphical components such as widgets y up to the
functional core).

Fig. 4 presents the architecture of the two components of the
reconfigurable interactive system. The left-hand side shows the
architecture of the interaction server (software part of the CDS)
while the application architecture is represented on the right-hand
side. It is noticeable that both components are compliant with the
ARCH model and that their interconnection point is the physical
interaction part of the application with the functional core part of



Fig. 4. The server-application dichotomy and their connection point according to the ARCH architecture.

Fig. 5. Detailed architecture compliant with ARINC 661 specification not supporting interaction failures.

D. Navarre et al. / Reliability Engineering and System Safety 96 (2011) 38–5242
the server. More precisely, this ‘‘shared’’ component holds the set
of widgets available in the various windows of the application. On
the application side, they represent the physical interaction (where
the crew member can interact with). On the server side, these
widgets correspond to the data managed by the server.

The detail of this architecture (including the structure and
behaviour of each component) is presented in the next section on
a case study in the field of interactive cockpits.
3.3. An ARINC 661 compliant architecture to support

interaction failure

The architecture presented in Fig. 5 proposes a structured view
on the findings of a project dealing with formal description
techniques for interactive applications compliant with the ARINC
661 specification [13,7]. Applications are executed in a cockpit
display system (CDS) that aim to provide flight crew with all the
necessary information to try to ensure a safe flight.

We are dealing with applications that exclude primary cockpit
applications such as PFD (primary flight display) and ND
(navigation displays) and only deal with secondary applications
such as the ones allocated to the MCDU (multiple control display
unit). For previous CDSs (such as the glass cockpit of the A320)
these applications were not interactive (they only displayed
information to the crew) and inputs were made available through
independent physical buttons located next to the display unit. The
location in the cockpit in-between the pilot and the first officer
make it possible for both of them to use such application.

Within this project, we proposed a unique notation (ICOs) to
model the behaviour of all the components of an interactive
application compliant with ARINC 661 specification. This includes
each interactive component (called widgets) the user application
(UA) per se and the entire window manager (responsible for the
handling of input and output devices, and the dispatching of
events (both those triggered by the UAs and by the pilots) to the
recipients (the widgets or the UAs).

The two main advantages of the architecture presented in
Fig. 5 are as follows:
�
 Every component that has an inner behaviour (server, widgets,
UA, and the connection between UA and widgets, e.g. the
rendering and activation functions) is fully modelled using the
ICO formal description technique thus making it possible to
analyse and verify the correct functioning of the entire system.

�
 The rendering part is delegated to a dedicated language and

tool (such as SVG (scalable vector graphics), and thus making
the external look of the user interface independent from the
rest of the application, providing a framework for easy
adaptation of the graphical aspect of cockpit applications.

However, this architecture does not support reconfiguration of
input or output devices in the cockpit, neither in case of redesign
nor in case of failure while in operation. However, requirements
specification for a display unit (DU) like the one of the Airbus
A380 explicitly requires the possibility for the co-pilot to read
information on the DU of the pilot (in case of failure on his/her
side for instance).

The new architecture we propose has been extended to
explicitly manage the reconfiguration of applications on the
display units. It presents a refinement of the architecture
proposed in Fig. 4. In that architecture (presented in Fig. 6), all
the elements of which the behaviour is formally defined using the
ICO formalism appear in a box featuring a small Petri net inside.
Indeed, the input and output devices are formally described using
the ICO notation in order to be handled by a configuration
manager, which is also responsible for reconfiguring devices and



Fig. 6. Global architecture compliant with ARINC 661 specification and supporting interaction failures.

D. Navarre et al. / Reliability Engineering and System Safety 96 (2011) 38–52 43
interaction technique according to failures. These failures are
detected by a software module (called Device Inspector) testing on
a regular basis the functioning of the input and output devices.

In Fig. 6 the dashed-line section highlights the improvements
made with respect to the previous architecture:
�
 The left-hand part of the frame highlights the addition of ICO
models dedicated to both input and output devices.

�
 The right-hand part presents the introduction of a new

component named configuration manager responsible for
managing the configuration of input and output devices.

�

Fig. 7. The original MPIA application (with navigation by means of Tab at the

bottom).
The configuration and server rendering component in charge of
representing, on the user interface, the current configuration.
In the case study, the current configuration is represented to
the crew by different mouse cursors. This is why that
component is connected both to the server (to access
information about the position of the cursor) and to the
configuration manager to access information about the current
configuration.

The upper dark line on top of Fig. 6 positions the architecture
according to the ARINC 661 decomposition while the lower dark
line positions the various components according to the generic
architecture presented in Fig. 4.

Even though modelling of input devices and interaction
techniques has already been presented in the context of multi-
modal interfaces for military cockpits [10], it was not integrated
with the previous architecture developed for interactive applica-
tions compliant with ARINC 661 specification. The rest of the
paper thus focuses on the configuration manager that is dedicated
to the dynamic reconfiguration of user interaction (both input
devices and interaction techniques).
4. Configuration manager policy and modelling

This section presents the modelling of different policies to
manage both input and output device configurations using the
ICO formalism. As configuration management activities may occur
at either runtime (while a user interacts with the application) or
‘‘pre-runtime’’ (e.g. just before starting an application or during a
switchover of users), we present a pre-runtime policy involving
explicitly input devices and a runtime policy explicitly managing
output devices.

To support the illustration of both the input and output
configurations, we use an application compliant with the
‘‘ARINC specification 661’’. This application features both simple
functionality and user interaction but is complicated enough to
highlight the main points of this paper and to show how
reconfigurations following hardware failures are managed. This
user application (UA) is made up of 3 different pages containing
12 different widgets as defined by the ‘‘ARINC specification 661’’.
It is important to note the usability or human factors issues are
out of the scope of this paper as we focus here on engineering
aspects of this application.

MPIA is a real user application (UA) aimed at handling several
flight parameters and contains 3 pages called WXR, GCAS, and
AIRCOND. WXR page is for managing weather radar information;
GCAS is for ground anti-collision system parameters while
AIRCOND deals with air conditioning settings. The application
can be controlled (though not at the same time) by the pilot and
the co-pilot via keyboard and mouse interaction using the KCCU
(see Fig. 1). Each application window is made up of a set of
widgets allowing users to modify the corresponding parameters.
The original application only exploits one window and navigation
between the 3 windows is made possible by means of a tab panel
as shown in Fig. 7. The interested reader can find more
information about MPIA and its specification using ICOs in
[11,12].



Fig. 8. The 3 panels of MPIA application (WXR, GCAS, and then AIRCOND).

Fig. 9. The control panel for display unit failures (all DUs are On).

D. Navarre et al. / Reliability Engineering and System Safety 96 (2011) 38–5244
In the rest of the paper and in order to support the illustration
of the output configuration, we propose a revised version of MPIA
where each window is displayed on a different display unit (DU)
in the cockpit making it possible to have the 3 pages of the
application visible at the same time. In order to allow reconfi-
gurations to occur, the DUs got enough space available for
displaying the content of two MPIA windows. Indeed, in Fig. 8,
both the upper part of DU1 and DU3, and the lower part of DU2
are able to accommodate additional content.

In order to simulate display units failures a controller has been
designed and its control panel is presented in Fig. 9. This panel
makes it possible to simulate failure both at input and output
levels. The control panel features one button per display unit
displaying the current status of the DU. Clicking on that button
changes the state of the DU. For instance on that Figure the DUs
are all in the state on. Clicking on the button named ‘‘DU1 ON’’
will shut down the DU1 and the button text will change to ‘‘DU1
OFF’’. Using that control panel, by selecting one of the two
predefined interaction techniques it is possible to switch between
them. The current state of Fig. 9 shows that current input
configuration allows users to interact with the MPIA application
by using simple clicks.
4.1. Input device configuration manager policy

A possible use of reconfiguration is to allow customizing the
interaction technique to make the application easier to manip-
ulate. Even if it is out of the scope of the current version of the
ARINC 661 specification, customization of interaction techniques
may become necessary bringing a better user experience [14] in
the same way as with personal computers. Customization
becomes necessary too when continuity of interaction service
has to be improved allowing users to carry on interacting with
the system even though some input and output devices are out
of order.

4.1.1. Principle of the input device configuration manager policy

We focus only on a very simple scenario of input device
configuration policy, which is based on the difference between a
pilot and the associated co-pilot. The standard configuration
allows the first officer (FO) and the pilot to interact at the same
time on the various widgets of the applications running on the
interactive display units of the cockpit. Selection of critical
commands requires that the pilot and the FO interact within a
short temporal window on the widget. While, on the user side,
such interaction technique appears as a simple click for each user,
on the system side it is handled as if one user was interacting with
two mice and producing MixedClicks, i.e. a click with both mice
on the same widget. If one KCCU fails then the interaction
technique is reconfigured and MixedClicks are replaced by
DoubleClicks for triggering critical commands.

The user interface server manages the set of widgets and the
hierarchy of widgets used in the user applications. More precisely,
the user interface server is responsible in handling the following:
�
 The creation of widgets.

�
 The graphical cursors of both the pilot and his co-pilot.

�
 The edition mode.

�
 The mouse and keyboard events and dispatching it to the

corresponding widgets.

�
 The highlight and the focus mechanisms.

�
 y
As it handles much functionality, the complete model of the
sub-server (dedicated in handling widgets involved in the MPIA
User Application) is complex and difficult to manipulate without
an appropriate tool, and cannot be illustrated with a figure.

Events received by the interaction server are in some way
high-level events as they are not the raw events produced by the
input devices drivers. In our architecture, the main role of an
input configuration is the role of a transducer [1]; it receives
raw events and produces higher-level events. The events
used by the interaction server, and so produced by an input
configuration are (normalKey, abortKey, validationKey, pickup,



Fig. 10. Model of the raw events handling for both configurations.

D. Navarre et al. / Reliability Engineering and System Safety 96 (2011) 38–52 45
unPickup, mouseDoubleClicked, mouseClicked). These events are
produced from the following set of raw events: mouseMoved,
mouseDragged, mousePressed, mouseReleased, mouseClicked, and
mouseDoubleClicked from the mouse driver, and pickup and
unPickup from the picking manager.

4.1.2. Modelling of the input device configuration manager policy

using ICO

Fig. 10 models the handling of raw events from the KCCU for
the production of upper level events such as mouseMove,
mousePressed, mouseReleased, etc. The model is common for
the two interaction techniques, DoubleClick and MixedClick, each
represented within their own model. Switching between these
models is performed at the interaction technique level and not at
the raw events level. This raw events model first tests the value of
a variable ‘‘changed’’ defined in transition CheckMouseState (upper
transition in Fig. 10) every chosen number of milliseconds (in this
model, 100 ms) in order to verify if the state of the mouse has
changed since the previous check. According to the value of the
variable, transition hasNotChanged or hasChanged will fire.

Following this, there are two further tests, according to the
movement of the mouse and the state of the mouse button.
The movement test is modelled using transition axisChanged

(left hand side of the model) according to x,y coordinates
(mouseMove). Transition buttonChanged (right hand side of the
model) checks to see if there has been a change in the state of the
mouse button, which produces mousePressed or mouseReleased
events. Only the left mouse button is considered in this example
to reduce the complexity of the model. After the axisChanged and
buttonChanged tests, transition done is fired placing a token in
place MouseNumber ready to restart the simulation.

The model in Fig. 11 presents how low level events produced are
combined at the interaction technique level to produce higher-level
events. Transitions mousePressed_t1 and mouseReleased_t1 receives
events from transition buttonChanged modelled in the ‘‘raw events’’
model shown in Fig. 10. The left part of this model produces a single
click from a mousePressed and a mouseReleased from mouse1 (i.e.
Pilot’s mouse), while the right hand part of the model performs the
same behaviour for mouse2 (i.e. first officer’s mouse). The model
states that if a MouseClick is performed (by either person) which
starts a timer, and a second event MouseClick (performed with the
other mouse) is received before the end of the timer, then the model
produces a MixedClick event (transition triggerMixedClick at the
bottom of the figure).

Fig. 12 represents the DoubleClick interaction technique in the
degraded mode, i.e. when only one KCCU is available. The model
receives events mousePressed, mouseReleased and mouseMoved
from the raw events model presented in Fig. 10. They are then
processed in order to be able to raise DoubleClick events, which
occur when the KCCU has been pressed and released twice within
a predefined temporal window and without any mouseMove
event in-between.

Fig. 13 presents the model responsible for the management of
the configurations. The basic principle of the model is that the
current configuration has to be removed (unregistered part of the
model on the right hand side of the figure) before the new desired
configuration is set (register configuration part of the model on
the left hand side of the figure).



Fig. 11. Model of the mixed (both KCCU) click configuration.

Fig. 12. Model of the DoubleClick configuration.

D. Navarre et al. / Reliability Engineering and System Safety 96 (2011) 38–5246
The four places in the central part of Fig. 13 (MouseDriver,
KeyboardDriver, PickingManager, and InteractionServer) contain a
reference to the set of models corresponding to the input devices
and to the interaction server. When a new configuration is requested
to be set (that can be performed in our example by using the
control panel presented in Fig. 9 in order to switch between the two
predefined input configurations), a token with a reference to the
new configuration is put in place NewConfiguration. Following this,
the four transitions highlighted on the left hand side are fired
in sequence (could be modelled as parallel behaviour as well) in
order to register the new configuration as a listener of the events
produced by the mouse driver, the keyboard driver, and the picking
manager. The fourth transition registers the interaction server as a
listener of the events produced by the new configuration.



Fig. 13. ICO model of the configuration manager part dedicated to the input devices.

Fig. 14. ARINC 661 specification windowing architecture.

D. Navarre et al. / Reliability Engineering and System Safety 96 (2011) 38–52 47
If a configuration is already set, when the new configuration is
requested, a token is put in place UnregisterCurrent in order to fire
the four transitions highlighted on the right hand side, corre-
sponding to unregister from the different models, in parallel with
registering the new configuration.
4.2. Output device configuration manager policy

A policy has to be defined on what kind of changes have to be
performed when a display unit fails. This policy is highly based on the
windowing system adopted by the standard ARINC 661 specification.



Fig. 15. An ICO model of a configuration manager.

D. Navarre et al. / Reliability Engineering and System Safety 96 (2011) 38–5248
The ARINC 661 specification uses a windowing concept, which
can be compared to a desktop computer windowing system, but
with many restrictions due to the aircraft environment con-
straints (see Fig. 14). The windowing system is split into 4
components:
�
 the display unit (DU) which corresponds to the hardware part,

�
 the format on a display unit (DU), consists of a set of windows

and is defined by the current configuration of the CDS,

�
 the window is divided into a set of layers (with the restriction

of only one layer activated and visible at a time) in a given
window,

�
 the widgets are the smallest component on which interaction

occurs (they correspond to classical interactors on Microsoft
Windows system such as command buttons, radio buttons,
check buttons, etc.).

4.2.1. Principle of the output device configuration manager policy

When a display unit fails, the associated windows might have
to be reallocated to another display unit. This conditional
assertion is related to the fact that
5 ARINC 661 specification is continuously evolving since the first proposal.

The draft 2 of supplement 3 containing 374 pages has been released on August
�

15th 2007.
There might be not enough space remaining on the other
display units (DU).
�
 The other applications displaying information on the other DU
might have a higher priority.

The ARINC 661 specification does not yet propose any solution
to this particular problem but it is known as being critical and
future supplements of the ARINC 661 specification may address
this issue.5 However, at the application level, the UADF (User
Application Definition File) defines a priority ordering among the
various layers included in the user application. At any given time,
only one layer can be active. At runtime, the activation of a new
layer must be preceded by the deactivation of the current layer.

The policy that we have defined lays in the definition of a set of
compatible windows, i.e. windows offering a greater or equal
display size. This is related to a strong limitation imposed by
ARINC 661, which states that some methods and properties are
only accessible at design time, i.e. (according to ARINC 661
specification vocabulary) when the application is initialized.
Methods and properties related to widget size are not available
at runtime and thus any reorganisation of widgets within a
window is not possible.



D. Navarre et al. / Reliability Engineering and System Safety 96 (2011) 38–52 49
4.2.2. Modelling of the output device configuration manager policy

using ICO

In Fig. 15, we present an implementation of the previously
defined policy for handling output devices using the ICO
formalism. This model is a subpart of the complete configura-
tion manager that can be added to the previous modelling we
have done and thus be integrated in the behaviour of our (cockpit
display system) CDS model [13].

The model presented here is based on a very simple case:
�

Fig
are
1 layer per window.

�
 2 windows per display unit.

�
 Each display unit is divided into two identical parts, one being

the top part and the other one being the bottom part.
Fig. 17. Cockpit status after failure of DU1 (D

Fig. 18. Cockpit status after reconfigur

. 16. The control panel for display unit failures (DU1 is Off and DU2 and DU3

still On).
Fig. 15 presents the ICO model corresponding to the current
state of the DUs. All the DUs are in the state ‘‘ON’’ (place
CurrentConfiguration at the centre of the model holds 3 tokens
and place UnavailableDU at the bottom of the model holds no
token):
1.
U1

atio
Each time one DU button is pressed on the control panel Fig. 9
(simulating an event that may be triggered by a sensor in
charge of detecting DU failure), the transition failureNotifica-
tion_ is fired depositing a token (holding the number of the DU
on which a failure occurred) in place PendingFailure.
2.
 The configuration manager finds a compatible window for a
reallocation of the contained layers (here all compatible
windows are listed at creation time and stored in place
AvailableReconfigurations). When a reconfiguration is chosen
the current configuration is modified (the content of place
CurrentConfiguration is updated). The model presented in
Fig. 15 contains two information flows: one being responsible
for reallocating the upper part of the DU (the left part of the
model) and the other one being responsible for reallocating the
bottom part of the DU (the right part of the model).
3.
 In the same way as the DU failure can be detected, the DU
repairing can be notified. The modelled behaviour of the
configuration manager updates the set of available DU for
reallocation (by setting a token in place CurrentConfiguration)
but does not immediately exploit the repaired DU. This is a
is Off and DU2 and DU3 are still On).

n following the failure of DU1.



Fig. 19. Behavioural modelling of the system following reconfiguration after DU1 failure.

Fig. 20. The control panel for display unit failures (DU1 and DU3 are Off while

DU2 is still On).

D. Navarre et al. / Reliability Engineering and System Safety 96 (2011) 38–5250
modelling choice and in that model only failure notifications
trigger reallocation of layers on the DUs.
To make this configuration mechanism more concrete, the

following paragraphs describe two scenarios of reconfiguration.

(1) Simulation of failure on display unit 1 (DU1) and reconfiguration

This section presents the evolution of the model according to a
failure on display unit 1 and presents both how the reconfigura-
tion is performed and how this is notified to the cockpit crew.

Fig. 16 shows the presentation of the control manager after the
display unit 1 has been set to a failure mode. DU2 and DU3 are
still On but DU1 is Off.
The corresponding state of the 3 DUs in the cockpit (as far as
MPIA application is concerned) is presented in Fig. 17. Without
reconfiguration of the content of the available DUs it is not
possible anymore for the crew to access and modify parameters
corresponding to the WXR part of MPIA.

Fig. 18 shows the reconfiguration of the DUs and the
notification presented to the crew stating that WXR page has
been allocated to a new DU. Here we only present information
related to the reallocation while the ICO model contains all the
information to provide crew with more information such as the
following: which DU failed, on which DU WXR has been
reallocated, and on which part of the DU it has been reallocated.
However, in this kind of safety critical applications, the users
are extensively trained on the behaviour of the system they are
using including allowed reconfigurations. This is very different
from other domains such as plastic interfaces [15] where
reconfigurations are occurring without previous training of users.

The model in Fig. 19 presents the state of the application after
reconfiguration. One DU is not available (there is one token in
place UnavailableDU at the bottom of the model) and there are
only 2 tokens in the place CurrentConfiguration (meaning that only
2 DUs are available). In addition, the right-hand upper part of the
model now makes it possible for the failed DU to be repaired and
exploited again (after a repairNotification is received).



Fig. 21. Cockpit status after reconfiguration failure following the failure of both DU1 and DU3.

D. Navarre et al. / Reliability Engineering and System Safety 96 (2011) 38–52 51
(2) Simulation of an additional failure on display unit 3 (DU3) and

reconfiguration impossible

This section presents another aspect of reconfigurations, i.e.
system behaviour when not enough resources are available
(either at input or output level). In this example, we present a
reconfiguration failure after the consecutive failure of both DU1
and DU3.

Fig. 20 presents the control panel for DU management right
after the DU3 OFF button has been pressed. Only DU2 remains in
the On mode. Fig. 21 shows the rendering of this state change in
the cockpit. In that state, there was no ‘‘slot’’ available in DU2 for
allocating the AIRCOND page (that was displayed in DU3). A
message is thus displayed to the crew letting them know that
AIRCOND page has not been successfully reallocated to any
available DU.

As for the successful reallocation presented in previous
section, here again the crew has been trained to unsuccessful
reconfiguration and can follow recovery procedures to handle
safely the aircraft. This is an important aspect of the contribution
of this paper: we do not propose a method for guaranteeing
reliable behaviour of interactive cockpit application. We only
propose a mean for describing several configurations and for
dynamically switching from one configuration to another one
when an adverse event (such as an input and/or output device
hardware failure) occurs.

In the case study presented in this section we have not
presented how priorities between configurations can be handled.
Indeed, in case of an insufficient number of resources, some
priorities between the possible configurations should be defined
and should be set. For instance in our case study, it could have
been considered that AIRCOND has a higher priority that WXR and
thus both AIRCOND and GCAS should be displayed if only one DU
is available. This is easily modelled using our Petri net based
approach but this is beyond the scope of this paper.
5. Conclusion and perspectives

This paper has addressed the issue of user interface reconfi-
guration in the field of safety critical command and control
systems. The application domain was civil aircraft cockpit
systems compliant with the ARINC 661 specification (which
defines communication protocols and window management
policy for cockpit displays systems). This work complements
previous work we have done on this topic [13] by extending the
behavioural model of cockpit display system with fault-tolerant
behaviour and with a generic architecture allowing static
configuration as well as dynamic reconfiguration of interaction
techniques. Further work we currently carry out deals
with several extensions with respect to what has been presented
in the paper:
�
 Provide means for the specification of reconfiguration policies
including the definition of priorities between user applications
and within a given user application (as discussed at the end of
previous section).

�
 Provide analysis methods and tools for assessing the efficiency

of the policies both in terms of user behaviour (i.e. how
possible is it for a pilot to perform a given set of tasks when a
given reconfiguration policy is adopted) and in terms of system
behaviour (i.e. how is it possible to identify the overall
performance of a given policy).

�
 Take into account more complex failure modes such as partial

failure of a device (e.g. a DU only displays a subset of colour) or
difficult to identify failure (e.g. HeisenBugs [22]).

The validation of the work presented here is under investiga-
tion by means of a joint project involving additionally Airbus and
LAAS. This is more complex and broader work as it involves other
standards such as ARINC 653 [4] (which deals with operating
system temporal and spatial partitioning) and embedding fault
tolerant mechanisms.

It is important to note that the fault-tolerance addressed in the
current paper is only related to the user interface part of the
cockpit display system even though it takes into consideration
input and output devices as well as the behaviour of the window
manager.

While the safety aspects have not been at the centre of the
paper the entire work presented here serves as a basis for
supporting the design and construction of safer interactive
embedded applications and to improve operations.
Acknowledgements

This work was partly supported by the EU funded Network
of Excellence ResIST http://www.resist-noe.eu under Contract
no. 026764. We would like to thank the reviewers for the
detailed comments which definitively improved the structure of
the paper.

http://www.resist-noe.eu


D. Navarre et al. / Reliability Engineering and System Safety 96 (2011) 38–5252
References

[1] Accot J, Chatty S, Maury S, Palanque P. Formal transducers: models of devices
and building bricks for highly interactive systems. In: Proceedings of the
fourth eurographics workshop on ‘‘design, specification and verification of
interactive systems’’, Spain: Springer Verlag; 5–7 June 1997.

[2] ARINC 661. Cockpit display system interfaces to user systems. ARINC
Specification 661. Prepared by Airlines Electronic Engineering Committee; 2002.

[3] ARINC 661-2. Cockpit display system interfaces to user systems. ARINC
Specification 661–2. Prepared by Airlines Electronic Engineering Committee;
2005.

[4] ARINC Specification 653P1-2. Avionics application software standard inter-
face. Prepared by Airlines Electronic Engineering Committee; 2006.

[5] Bass L, et al. A metamodel for the runtime architecture of an interactive system:
the UIMS tool developers workshop. SIGCHI Bulletin 1992;24(1):32–37.

[6] Bastide R, Philippe Palanque, Ousmane Sy, Duc-Hoa Le, David Navarre. Petri
net based behavioural specification of CORBA systems. In: Proceedings of the
international conference on application and theory of Petri nets ATPN’99,
Williamsburg (USA): LNCS Springer Verlag; 1999. p. 66–83.

[7] Bastide R, Palanque P, Sy O, Navarre D. Formal specification of CORBA
services: experience and lessons learned. In: Proceedings of the 15th ACM
SIGPLAN conference on object-oriented programming, systems, languages,
and applications (Minneapolis, Minnesota, United States). OOPSLA ’00. ACM,
New York, NY; 2000.

[9] Bastide R, Palanque P, Sy O, Le D-H, Navarre D. PetShop a case tool for Petri
net based specification and prototyping of Corba systems. Tool demonstra-
tion with application and theory of Petri nets ATPN’99. Williamsburg (USA):
LNCS Springer Verlag; 1999.

[10] Bastide R, Navarre D, Palanque P, Schyn A, Dragicevic P. A model-based
approach for real-time embedded multimodal systems in military aircrafts.
In: Proceedings of the sixth international conference on multimodal
interfaces (ICMI’04) October 14–15, 2004. Pennsylvania State University,
USA: ACM Press; 2004.

[11] Barboni E, Navarre D, Palanque P, Basnyat S. Exploitation of formal specification
techniques for ARINC 661 interactive cockpit applications. In: Proceedings of HCI
aero conference, HCI Aero 2006, Seattle, USA; September 2006.

[12] Barboni E., David Navarre, Philippe Palanque & Sandra Basnyat. A formal
description technique for interactive cockpit applications compliant with
ARINC specification 661. In: Proceedings of the SIES 2007—IEEE second
international symposium on industrial embedded systems July 4–6, 2007,
Lisbon, Portugal. pp. 184–94.

[13] Barboni, E, Conversy, S, Navarre, D, Palanque, P. Model-based engineering of
widgets, user applications and servers compliant with ARINC 661 specification.
In: Proceedings of the 13th conference on design specification and verification
of interactive systems (DSVIS 2006), LNCS: Springer Verlag; 2006.
[14] Csı́kszentmihályi M. Flow: the psychology of optimal experience. New York:
Harper and Row; 1990.

[15] Thevenin D, Coutaz J. Plasticity of user interfaces: framework and research
agenda. In: Proceedings of interact’99, vol. 1, Edinburgh: IFIP TC 13, IOS Press;
1999. p. 110–7.

[16] Eirinaki M, Lampos C, Paulakis S, Vazirgiannis M. Web personalization
integrating content semantics and navigational patterns. In: WIDM ’04:
Proceedings of the 6th annual ACM international workshop on web
information and data management, New York, NY, USA: ACM Press; 2004.
p. 72–9.

[18] Genrich HJ. Predicate/transitions nets. In: Jensen K, Rozenberg G, editors.
High-levels petri nets: theory and application. Springer Verlag; 1991. p. 3–43.

[19] Hollnagel E, Woods D D, Leveson N. Resilience engineering: concepts and
precepts. Ashgate; 2006. 397.

[20] Lakos C. Language for object-oriented Petri nets. #91-1, Department of
Computer Science, University of Tasmania; 1991.

[21] MacKenzie S, Zhang SX, Soukoreff RW. Text entry using soft keyboards.
Behaviour and information technology 1999;18:235–44.

[22] Musuvathi M., Shaz Qadeer, Thomas Ball, Ge�l rard Basler, Piramanayagam A.
Nainar, and Iulian Neamtiu. Finding and reproducing heisenbugs in
concurrent programs. In: Proceedings of the eighth USENIX symposium on
operating systems design and implementation, 2008. p. 267–80.

[23] Navarre D, Palanque P, Bastide RA. Tool-supported design framework for
safety critical interactive systems in interacting with computers, vol. 15/3.
Elsevier; 2001 pp. 309–328.

[24] Navarre D, Palanque P, Ladry J, Barboni E. ICOs: A model-based user interface
description technique dedicated to interactive systems addressing usability,
reliability and scalability. ACM Trans. Comput.-Hum. Interact. 2009;16(4):
1–56.

[25] Navarre D, Palanque P, Bastide R. A formal description technique for the
behavioural description of interactive applications compliant with ARINC 661
specifications. HCI-Aero’04 Toulouse, France, 29 September–1 October 2004.

[26] Palanque P, Bernhaupt R Navarre D, Ould M, Winckler M. Supporting
usability evaluation of multimodal man-machine interfaces for space ground
segment applications using Petri net based formal specification. In: Proceed-
ings of the ninth international conference on space operations, Rome, Italy;
June 18–22; 2006.

[27] Petri CA. Kommunikation mit automaten. Darmstadt: Technical University; 1962.
[28] Reason J. Human error. Cambridge University Press; 1990.
[29] Rı́os SA, Velásquez J D, Yasuda H, Aoki T. Web site off-line structure

reconfiguration: a web user browsing analysis, in knowledge-based intelli-
gent information and engineering systems. LNCS 2006;4252:371–8.

[31] Van Dam A. Post-WIMP user interfaces. Communications of the ACM,
February 1997, 40(2); 1997. p. 63–7.


	Designing for resilience to hardware failures in interactive systems: A model and simulation-based approach
	Introduction
	ICOs a formal description technique for interactive systems
	Informal overview of ICOs
	Interactive cooperative objects formalism (ICO)
	Cooperative object
	Presentation part
	Activation function
	Rendering function


	An architecture for reliable and reconfigurable user interfaces
	ARINC 661 specification
	A generic architecture for user interaction reconfiguration
	An ARINC 661 compliant architecture to support interaction failure

	Configuration manager policy and modelling
	Input device configuration manager policy
	Principle of the input device configuration manager policy
	Modelling of the input device configuration manager policy using ICO

	Output device configuration manager policy
	Principle of the output device configuration manager policy
	Modelling of the output device configuration manager policy using ICO


	Conclusion and perspectives
	Acknowledgements
	References




