
Institute for Security and Technology | September 17, 2020

FORMAL METHODS
FOR NC3

ADAM WICK

FORMAL METHODS FOR NC3 SYSTEMS
ADAM WICK
SEPTEMBER 8, 2020
 I. INTRODUCTION
In this paper, Adam Wick gives a call to action: ³...the request for future NC3 protocol
descriptions to include not only a broad description of the protocol and its goals, but also an
executable specification of the protocol...Given the sensitivity of these systems, we believe that
the use of proof is critical.´

Adam Wick is a principal scientist at Galois.

The paper was prepared for the Antidotes For Emerging NC3 Technical Vulnerabilities, A
Scenarios-Based Workshop held October 21-22, 2019 and convened by The Nautilus Institute
for Security and Sustainability, the Institute for Security and Technology (then,Technology for
Global Security), The Stanley Center for Peace and Security, and hosted by The Center for
International Security and Cooperation (CISAC), Stanford University.

A podcast with Adam Wick, Philip Reiner and Peter Hayes can be found here.

It is published simultaneously here by Institute for Security and Technology and here by Nautilus
Institute and is published under a 4.0 International Creative Commons License the terms of
which are found here.

Acknowledgments: The workshop was funded by the John D. and Catherine T. MacArthur
Foundation. Maureen Jerrett provided copy editing services.

The views expressed in this report do not necessarily reflect the official policy or position of
the Institute. Readers should note that IST seeks a diversity of views and opinions on significant
topics in order to identify common ground.

Banner image is by Lauren Hostetter of Heyhoss Design.

https://soundcloud.com/tech4gs
https://securityandtechnology.org/ist-policy-lab/in-the-works/last-chance-communicating-at-the-nuclear-brink/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://heyhoss.design/

II. IST SPECIAL REPORT BY ADAM WICK
FORMAL METHODS FOR NC3 SYSTEMS
SEPTEMBER 8, 2020

Nuclear command, control, and communication (NC3) systems represent some of the most
sensitive workflows on the planet, and errors in their implementation risk catastrophic problems
for the nation and the planet. Furthermore, from a development perspective, these systems
operate in the worst of environments: in many cases they are not run as often as commercial
systems, and their critical operational need occurs in unpredictable, degraded environments. As a
result, our ability to fully test these systems is compromised, as we have both significantly less
ongoing testing than, say, flight systems or the Internet, while also needing to operate in a much
wider set of environmental conditions.

Given the desire to modernize NC3 infrastructure, we suggest addressing the testing and
evaluation challenges through the use of Formal Methods1,2 technologies which leverage the
power of mathematical proof to provide (a) a very concrete understanding of what assumptions
are built into our systems, and (b) increased confidence that our systems will operate correctly if
these assumptions are satisfied. In this paper, we discuss how these techniques can be used to
implement networking or other communication protocols within an NC3 system, and provide
suggestions for future NC3 design committees, to include CATALINK3.

1. FORMAL PROOF, TWO WAYS
The overall goal of a formal proof of system correctness is to show that an implementation
satisfies a set of goals. When proving properties about the kinds of network protocols used
within NC3 systems, we often split the problem of proof into two smaller problems: a proof that
the protocol achieves some set of desirable properties, followed by a proof that a particular code
base implements that protocol correctly. By combining the two proofs, we can show that the
implementation has all of the desirable properties we seek, as shown in the following diagram:

There have been tools to do the left-hand proof -- the proof that the protocol meets some key
system goals -- available for decades, and they have been used to evaluate any number of critical
communications systems. In some cases, these proofs are done by hand, either as pen and paper
proofs or using semi-automated theorem provers (Coq4, Isabelle5, etc.). In the last 20-30 years,
though, these proofs have been the domain of model-checking tools, which are capable of
proving a wide variety of useful properties automatically. In particular, they are very useful for
proving µalways eventually¶ properties, such as µthe protocol always eventually generates a new
key¶ or µthe protocol always eventually is ready to receive data.¶ Automated tools (theorem
provers and model checking tools) are particularly useful, because they are considerably better
than human reason when it comes to probabilistic failures and corner cases within
communication systems. For example, in protocol states with complex sets of optional fields, it
can be very difficult for humans to reason about how all the possible combinations of options
might interact, as seen in the recent URGENT/116 flaws in VxWorks. In the case of NC3, the set
of options may not be particularly complicated, but all of the possible combinations of direct and
backup communication media present particular difficulties. How, for example, will the fixed,
large frame size of one network interact with the loss rate of a satellite network, and is the
system actually guaranteed to react if both links go down and the system devolves to modems
over analog telephone cables?

Tools to do the right-hand proof -- the proof that a code base correctly implements a protocol --
are a much more recent phenomena. Tools like CBMC7 and Galois¶s Software Analysis
Workbench (SAW)8 have been used recently by the US Department of Defense (Air Force,
DARPA, etc.), members of the United States Intelligence Community, and large commercial
vendors to ensure that their most critical systems are free from common bugs, and that the
systems correctly implement key algorithms. As an example, Galois and Amazon worked
together9 to use SAW to verify key components within Amazon¶s cloud storage service, which
provides secure data hosting for a huge variety of sensitive military, governmental, and
commercial clients. Furthermore, these proofs are attached to the ongoing development of this
service, so that as it develops, the proofs are reproduced for every modification of the system.
Given the never-ending cycle of software development, this is a key capability to ensure that
critical systems, including NC3 systems, maintain their correctness across their entire lifecycle.
It also provides validators evidence that a system continues to work in the presence of small
changes, and can be considerably less costly and time-consuming than hardware-in-the-loop
testing.

2. MOVING TOWARDS COMPLETE PROOF
One benefit of proof, is that it guarantees a set of properties under a set of critical assumptions.
The proofs Galois performed for Amazon, for example, show that their implementation satisfies
certain guarantees -- assuming the model of the underlying hardware is correct, the software has
not been tampered with, etc. These proofs are then paired with automatic testing of the
assumptions and the models used within the proof, to validate that the understanding of the world
within the realm of proof matches the real world. For example, Galois has spent considerable
time generating tools capable of proving that an implementation of a cryptographic algorithm
matches a specification of that algorithm, but we still recommend the use of known-answer tests
against well-known implementations. The proof ensures that the implementation matches the
specification on all inputs, and the known-answer tests help us, at Galois, feel confident that both

the implementation and the specification match everyone else¶s understanding. Alternatively, we
may generate test cases that use sample data to ensure that core operations done in the
implementation work the way we expect them too.

x For the most critical NC3 infrastructure, a laudable goal would be to drive these
techniques all the way down to base physical laws, by building«

x Verified hardware constructed using a trusted process, which starts a«
x Verified secure boot mechanism, which launches (and records a description of) a«
x Verified operating system kernel, which runs a set of«
x Verified drivers and core system (file system, network subsystem) code, which is used

by«
x Verified application code«

Along with each verification, it would be ideal to see test cases that explore the base assumptions
used for each proof, so that an independent auditor can ensure that the proofs still operate as
expected. While a full implementation of such a verified stack is likely outside the scope of most
projects, there has been significant progress across all of these areas in the last decade. Projects
like DARPA SSITH10 and SHIELD11 are attempting to tackle the problem of safe hardware, and
software projects like seL4 have developed a verified implementation of core operating system
services. The NSF¶s DeepSpec12 project is investigating how to specify the correctness goals for
a large hardware/software system, while projects like SAW are building tools to evaluate core
system and application code.

However, many of these projects are research efforts, and the ability to fully specify and verify a
complex system is still a ways off. For system designers that need to build systems now, the
existing tooling can provide significant advantages over traditional software engineering
approaches. NC3 systems should (a) incorporate existing tooling where they can, and (b) provide
the base specifications and infrastructure for proof, so that when the tools mature they can be
used immediately. The level of guarantee provided by tools like SAW is enormous compared to
the ability to test software, and having a core understanding of what the system assumptions are,
and how they are supported, is critical in making risk assessments for deployment and use of
NC3 systems.

3. CONCLUSION & REQUEST
Formal methods technologies show promise in dramatically improving the assurance of critical
systems; there are technologies we can apply immediately to prove critical properties of core
systems, and emerging technologies that may be applicable in the future. In all cases, these
systems require two critical inputs from system designers:

1. a description of the goals of the system
2. an executable specification

Beyond providing some background on the use of formal methods for NC3 systems, one of the
core goals with this paper is to suggest that future NC3 systems begin with these two inputs, in
order to enable possible use of formal methods in the future.

The first of these, the description of the goals of the system, often already exists: it is often
readily found in the requirements specifications of complex protocols and systems, as an English
description. This provides a base understanding of both the overt goals of the system, as well as
the implicit goals of the system. For example, the overt goal of the IP protocol is to allow data
traffic to travel from one network to another, via any number of networks in the middle. An
implicit goal of IP is that it should always find a path from the first network to the last, provided
that the two networks are connected within a reasonable number of hops. These descriptions are
useful for a formal methods engineer, as they provide context that can help them understand
what proofs are important to the problem.

The second of these, the executable specification, is a formal, machine-readable description of
how the protocol is supposed to work. The executable specification can be considered similar to
an ASN.113 description used in many common network or data format descriptions --it provides
a precise, mathematical description of the protocol, either in the shape of a reference
implementation or as collection of rigorously-defined pseudocode. Such a description is useful
for several reasons: it provides a basis for the proof, yes, but it can also: (1) minimize
misunderstandings due to the vagaries of the English language or due to improper translations of
English descriptions into other languages; (2) be a base system to run test vectors against, in
order to create known-answer tests for later testing; and (3) provides evidence, in the form of an
example, that the system is actually implementable. All three are critical, in general, and
particularly critical in international systems where small errors in English translation can have
disastrous results.

The key call to action then, is the request for future NC3 protocol descriptions to include not
only a broad description of the protocol and its goals, but also an executable specification of the
protocol. This specification can then be used by computer scientists to prove that
implementations meet the goals of the system and protocol designers, even in the broad array of
environments and failure modes in which NC3 systems operate. Given the sensitivity of these
systems, the use of proof is critical. With today¶s tools, we are capable of providing previously
unheard-of levels of assurance that we have gotten them right.

III. ENDNOTES

1Tim Carstens, David Forscey ³Formal Methods as a Path Toward Better Cybersecurity´,
Brookings Tech Stream, June 23, 2020 https://www.brookings.edu/techstream/formal-methods-
as-a-path-toward-better-cybersecurity/
2 Wikipedia, ³Formal Methods´ https://en.wikipedia.org/wiki/Formal_methods
3 Nautilus Institute, Stanley Center For Peace and Security, and Technology for Global Security,
"Last Chance: Communicating at the Nuclear Brink, Scenarios and Solutions Workshop,
Synthesis Report", NAPSNet Special Reports, May 23, 2020
https://securityandtechnology.org/wpcontent/uploads/2020/07/synthesis_report_last_chance_fina
l_report_IST.pdf
4 Coq, ³The Coq Proof Assistant´ https://coq.inria.fr/
5 Isabelle generic proof assistant https://isabelle.in.tum.de/

https://www.brookings.edu/techstream/formal-methods-as-a-path-toward-better-cybersecurity/
https://www.brookings.edu/techstream/formal-methods-as-a-path-toward-better-cybersecurity/
https://en.wikipedia.org/wiki/Formal_methods
https://securityandtechnology.org/wpcontent/uploads/2020/07/synthesis_report_last_chance_final_report_IST.pdf
https://securityandtechnology.org/wpcontent/uploads/2020/07/synthesis_report_last_chance_final_report_IST.pdf
https://coq.inria.fr/
https://isabelle.in.tum.de/

6 Armis, ³Urgent/11 affects additional RTOSs´
https://www.armis.com/urgent11/#:~:text=Dubbed%20³URGENT%2F11%2C´,over%20the%20
last%2013%20years.&text=Six%20of%20the%20vulnerabilities%20are,Remote%20Code%20E
xecution%20(RCE)
7 CBMC, ³Bounded Model Checking for Software´ https://www.cprover.org/cbmc/
8 Galois, ³SAW´ https://saw.galois.com/
9 Galois, ³Proving Amazon¶s s2n correct´ https://galois.com/project/amazon-s2n/
10 Keith Rebello, ³System Security Integration Through Hardware and Firmware (SSITH)´,
DARPA https://www.darpa.mil/program/ssith
11 Serge Leef, ³Supply Chain Hardware Integrity for Electronics Defense (SHIELD)´, DARPA
https://www.darpa.mil/program/supply-chain-hardware-integrity-for-electronics-defense
12 Lng, X; Ji, S; Zou, J; Wang, J; Wu, C; Li, B; Wang, T. ³DEEPSEC: A Uniform Platform for
Security Analysis of Deep Learning Model´, NSF https://par.nsf.gov/biblio/10095518
13 ³ASN.1 is a formal notation used for describing data transmitted by telecommunications
protocols, regardless of language implementation and physical representation of these data,
whatever the application, whether complex or very simple.´ https://www.itu.int/en/ITU-
T/asn1/Pages/introduction.aspx

IV. IST INVITES YOUR RESPONSE
IST invites your responses to this report. Please send responses to:
catalink@securityandtechnology.org. Responses will be considered for redistribution to the
network only if they include the author¶s name, affiliation, and explicit consent.

https://www.armis.com/urgent11/%23:~:text=Dubbed%20
https://www.armis.com/urgent11/%23:~:text=Dubbed%20
https://www.armis.com/urgent11/%23:~:text=Dubbed%20
https://www.cprover.org/cbmc/
https://saw.galois.com/
https://galois.com/project/amazon-s2n/
https://www.darpa.mil/program/ssith
https://www.darpa.mil/program/supply-chain-hardware-integrity-for-electronics-defense
https://par.nsf.gov/biblio/10095518
https://www.itu.int/en/ITU-T/asn1/Pages/introduction.aspx
https://www.itu.int/en/ITU-T/asn1/Pages/introduction.aspx

	III. ENDNOTES

