GASTLES BUILT

ON

TOWARDS SECUR
SOURCE SOFTWA

NG THE OP

RE ECOSYST

0F BRAMMER =3 |1 | /i
sasourten |41 1L if
,MEGANS IFEL El] i i

APRIL“ZS

ns O o
SECURITY + TECHNOLOGY. \

Castles Built on Sand:
Towards Securing the Open-Source Software Ecosystem

April 2023

Authors: Zo€ Brammer, Silas Cutler, Marc Rogers, Megan Stifel
Design: Sophia Mauro
Copy Edits: Geoffrey Ballinger

The Institute for Security and Technology and the authors of this report invite free use of
the information within for educational purposes, requiring only that the reproduced material
clearly cite the full source.

IST may provide information about third-party products or services, including security tools,

videos, templates, guides, and other resources included in our cybersecurity toolkits (collec-
tively, “Third-Party Content”). You are solely responsible for your use of Third-Party Content,

and you must ensure that your use of Third-Party Content complies with all applicable laws,

including applicable laws of your jurisdiction and applicable U.S. export compliance laws.

Copyright 2023, The Institute for Security and Technology
Printed in the United States of America

About the Institute for
Security and Technology

As new technologies present humanity with unprecedented capabilities, they can also
pose unimagined risks to global security. The Institute for Security and Technology’s (IST)
mission is to bridge gaps between technology and policy leaders to help solve these
emerging security problems together. Uniquely situated on the West Coast with deep ties
to Washington, DC, we have the access and relationships to unite the best experts, at the
right time, using the most powerful mechanisms.

Our portfolio is organized across three analytical pillars: Innovation and Catastrophic
Risk, providing deep technical and analytical expertise on technology-derived existential
threats to society; Geopolitics of Technology, anticipating the positive and negative
security effects of emerging, disruptive technologies on the international balance of
power, within states, and between governments and industries; and Future of Digital
Security, examining the systemic security risks of societal dependence on digital
technologies.

IST aims to forge crucial connections across industry, civil society, and government

to solve emerging security risks before they make deleterious real-world impact. By
leveraging our expertise and engaging our networks, we offer a unique problem-solving
approach with a proven track record.

Acknowledgments

The publication of this paper was made possible by a generous grant from Omidyar
Network, a social change venture that works to reimagine critical systems and the ideas
that govern them. We are grateful to Omidyar Network for their support of our research
into the security of the open-source software ecosystem.

Thank you to all those who have been involved in the research for this paper, including
members of the IST team, external contributors, and anonymous peer reviewers. We are
grateful to all those who took the time to lend their expertise to this project.

AUTHORS

Zoé Brammer
Silas Cutler
Marc Rogers
Megan Stifel

CONTRIBUTORS

We appreciate the following contributors for their expertise and thoughtful feedback
as we drafted this paper. They provided insight on technical aspects of open-source
software, input on recommendations, and a diverse range of perspectives on the
challenges and opportunities posed by securing the open-source software ecosystem.

John Banghart
Bryson Bort

Sven Herpig
Andrew Jensen
Jen Miller-Osborn

Castles Built on Sand April 2023 @ securityandtechnology.org

Table of Contents

IntrOduction ...00........00........00........00........00........QQ........00........00......1
Shifting Open-Source Software Security to a Shared Responsibility Model 2

Redoubling Support for Existing Secure Software Development Frameworks, Policies,
AN LICENSES ..ttt ettt ettt 4

Reexamining Approaches to Vulnerability Management and Mitigation to Ensure They
Account for Open-Source SOfIWArE.......cueveieieieeeeeeceee e 7

(0] Tod (111 (o] 1 [9

Appendix 1: What Happened?..........cceeeeeecceceereeenennnccceeeeenenness 11

TIMEIINE ettt et e e e et e et e e be e se e seesseesseenseenes "

Log4j Vulnerability Identification TIMeliNe.........cceoveieiieieeeeeeeeeeeee s 12
EXPIOIATION ..ottt st ae et nne s 14

LOg4] EXPIOItation TIMEINE....cv ittt ettt ennas 14
Using Log4Shell to Deliver MaIWare..........ccuovieierieieieceeeeeee et 15
Barriers 10 EXPIOAtIONoeeeieeeeeee e 16
The Politics of Vulnerability DISCIOSUIE.......cccvevveeieieieeeeececeeeeeee e 17

Appendix 2: How Did It Happen?eeeeeeereeeeeeecceeceneeeeeeeeeeeeeeeness 18

What is Open-Source SOftWAIE? ...t 18
The Economics of Open-Source SOftWare.......c.ooveveeieeieeeeeeee e, 20
What Happens When Things GO WrONQ?coveoieieiieeeeceeeeeeeee e 21

Appendix 3: Shortening the Maturation Curve24
Vulnerability Maturation Curves: Log4Shell and Heartbleed vs. Traditional Vulnerability 25
Zooming in on Log4Shell and Heartbleedocuoveieiiieieieeeeeeeeee e 26

Appendix 4: A Note on the Cybersecurity Poverty Line................26

Castles Built on Sand April 2023 @ securityandtechnology.org

Introduction

Software is a foundational part of the infrastructure of the modern world. While
vulnerabilities can be present in all types of software, the majority of software developers
rely to some extent on open-source packages to catalyze innovation in software
development without rebuilding the same packages many times over. Provided that
these packages are secure, open-source software creates added capacity that translates
into economic gains. The impact of the Log4j software vulnerability (CVE-2021-44228),
disclosed on December 9, 2021, should prompt cybersecurity professionals and the
software ecosystem at large to reimagine how to mitigate open-source software

Like Heartbleed in OpenSSL (CVE-2014-0160), remote code execution (RCE) in Apache
Struts (CVE-2021-31805), and exploitation of the Bash Uploader in Codecov, Log4j is a
critical vulnerability identified in open-source software (For a comparative case study

documentation of its development, the transparent response and mitigation efforts at
each stage of the disclosure cycle, and its ongoing exploitation. As vulnerabilities cannot
be completely eliminated and can be rapidly exploited by a wide array of actors, there is
an urgent need for a plan to reduce the prevalence of vulnerabilities and to mitigate the
greatest risks posed to the entire software ecosystem when they do arise—both now and
in the future.

This report advocates shifting open-source software security to a shared responsibility
model, redoubling support for existing secure software development frameworks,
policies, and licenses, and reexamining approaches to vulnerability management and
mitigation to ensure they account for open-source software (For additional context,

If adopted and implemented by stakeholders in the open-source software ecosystem,
these recommendations could help reduce the impact of vulnerabilities such as Log4j
and prevent future vulnerabilities from arising (Stakeholders include but are not limited to
open-source contributors, organizations using open-source software, and governments

Castles Built on Sand April 2023 @ securityandtechnology.org

https://publicknowledge.org/wp-content/uploads/2021/11/Securing_the_Modern_Economy-Transforming_Cybersecurity_Through_Sustainability_FINAL_4.18.18_PK.pdf
https://publicknowledge.org/wp-content/uploads/2021/11/Securing_the_Modern_Economy-Transforming_Cybersecurity_Through_Sustainability_FINAL_4.18.18_PK.pdf

working to secure the open-source software ecosystem). Many of the recommendations
echo reports published by the Cyber Safety Review Board of the Cybersecurity and
Infrastructure Security Agency (CISA), the National Institute for Standards and Technology
(NIST), the Atlantic Council, and others. A shared responsibility model brings such
approaches together to promote a fundamental shift in the open-source software
ecosystem.

The information and recommendations presented in this report are useful in different
ways to different stakeholders. Readers with no knowledge of the Log4j vulnerability
or open-source software should begin by reading Appendices 1 and 2 for a complete
picture of the vulnerability and the challenges present in the existing open-source
software ecosystem. Policy experts concerned with the security of open-source software
should focus on the main body of the report and its recommendations, consulting the
appendices as needed for context. Readers interested in developing a more technical
understanding of open-source software vulnerabilities and how they are evolving
should read Appendix 3: Shortening the Maturation Curve: The Log4j and Heartbleed
Vulnerabilities. Instances where the appendices can provide useful context to the main
body of the report have been flagged.

Shifting Open-Source Software Security to a
Shared Responsibility Model

Open-source code, by design, is available to the general public and incorporated
frequently into both commercial and open-source projects. Practices for integrating
proprietary and open-source software into products differ, in part because software
provided by third-party vendors usually comes with contractual obligations that open-
source code does not. Internally written code usually follows an organization’s secure
software development life cycle (SDLC), which includes peer review. Open-source code,
however, is usually integrated without a rigorous review process. Even as the broader
software ecosystem defers responsibility to them, the disproportionately small—and
predominantly voluntary—group of developers that maintain open-source code cannot
be expected to identify and mitigate all vulnerabilities.

A shared responsibility model could distribute the responsibility of securing and
maintaining open-source software more evenly. Open-source code allows commercial
software developers to save time and money when developing projects (For more

Castles Built on Sand April 2023 @ securityandtechnology.org

https://www.cisa.gov/sites/default/files/publications/CSRB-Report-on-Log4-July-11-2022_508.pdf
https://sites.gatech.edu/ossi/
https://www.atlanticcouncil.org/wp-content/uploads/2023/02/Avoiding-the-success-trap-Toward-policy-for-open-source-software-as-infrastructure.pdf

information on the economics of open-source software, see Appendix 2: How Did

It Happen?). Given their heavy reliance upon such software, commercial software
developers should act as responsible partners in the open-source community by
reporting bugs when they are found, providing support to package maintainers when
possible, and avoiding shifting blame to open-source developers when vulnerabilities
arise. In an ideal world, all code used by an enterprise, whether proprietary or open-
source, would face the same scrutiny and validation through secure SDLC processes.
Large corporations are especially well-suited for the shift to a shared responsibility
model, given their resources and the benefits and risks they face when integrating open-
source software into projects. Further, the federal government could develop incentives
encouraging companies to adopt and leverage existing quality assurance processes to
identify and rectify vulnerabilities in open-source code. Incentives could also encourage
organizations to report identified vulnerabilities to the original developers, rather than
simply fixing the code in their own environment.

Many businesses that already conduct audits and maintenance of proprietary code could
benefit from doing the same with open-source software, applying the same standards to
all code integrated into their platform. A development model that leverages open-source
code to cut costs and accelerate project delivery is sustainable so long as companies
test and certify all code on a regular basis. Transitioning the maintenance of open-source
software to a shared responsibility model that includes an obligation to review code

is the most efficient and effective way to increase the security of the entire software
ecosystem.

Further, if organizations commit to reviewing and auditing open-source code on a regular
basis, vulnerabilities may be caught before the code is published instead of years later.
While this could introduce some risks—like the deluge of spam pull requests to open-
source repositories following DigitalOcean's Hacktoberfest—or change the nature of
open-source projects, leveraging existing resources is far more likely to strengthen the
open-source software community than to impair it. Other mechanisms to create more
secure end products should also be explored, including new roles for membership
organizations, alternative contribution models and certification strategies, and funding
mechanisms designed to finance maintenance and updates for established open-source
projects.

Finally, stakeholders should reexamine existing frameworks for legal liability. A strategic
objective of the 2023 U.S. National Cybersecurity Strategy, shifting liability around
insecure software products and services is one way to spell out where responsibility lies.

Castles Built on Sand April 2023 @ securityandtechnology.org

https://blog.domenic.me/hacktoberfest/
https://blog.domenic.me/hacktoberfest/
https://www.digitalocean.com/
https://hacktoberfest.digitalocean.com/
https://www.whitehouse.gov/wp-content/uploads/2023/03/National-Cybersecurity-Strategy-2023.pdf

The strategy notes that “too many vendors ignore best practices for secure development,
ship products with insecure default configurations or known vulnerabilities, and integrate
third-party software of unvetted or unknown provenance.” For example, despite

software using vulnerable versions continues to be identified.

Redoubling Support for Existing Secure
Software Development Frameworks,
Policies, and Licenses

Shifting open-source software security to a shared responsibility model would

increase the practicality of existing secure software development frameworks, policies,
and licenses by more evenly spreading the burden of adoption and enforcement.
However, software library vulnerabilities will continue to be a reality for the open-

source community; as developers write new code, new vulnerabilities will inevitably
arise. As a result, it is essential that stakeholders redouble support for existing secure
software development frameworks, policies, and licensing schemes to ensure that future
vulnerabilities do not endanger the Internet’s infrastructure. The following strategies

can help stakeholders to track, monitor, and evaluate current and future uses of open-
source software, which will both improve risk assessment and mitigate fallout from

vulnerabilities.

Stakeholders should drive a conversation around open-source licensing—
‘. legally binding contracts between the author and the user of a software

component—that focuses on identifying gaps in the common elements of

the core licenses that support the open-source ecosystem. Proper licensing
would provide greater consistency within the ecosystem, which would enable a wide
variety of entities to adopt open-source code while reducing the risk associated with
implementation for both the developers and users of open-source projects. Licensing
can also increase the visibility of code changes by ensuring modifications are tracked
or released back to the original project, which can limit the fragmentation that can make
vulnerability management especially challenging. Likewise, there is now an opportunity
to empower software bills of materials (SBOMSs) through open-source licensing, which
would further increase clarity during vulnerability management. Finally, licensing

schemes should protect the accessibility of open-source software, a process that would

Castles Built on Sand April 2023 @ securityandtechnology.org

https://www.zdnet.com/article/log4j-flaw-thousands-of-applications-are-still-vulnerable-warn-security-researchers/
https://www.zdnet.com/article/log4j-flaw-thousands-of-applications-are-still-vulnerable-warn-security-researchers/
https://www.whitesourcesoftware.com/resources/blog/open-source-licenses-explained/

benefit from the support of lawyers and others with a deep knowledge of legal licensing
frameworks.

The U.S. government should leverage federal procurement. As the largest
consumer of goods and services in the global market, the U.S. government
can leverage Federal Acquisition Regulations (FAR) and the Federal Risk
and Authorization Management Program (FedRAMP) to increase the
cybersecurity of products and services it purchases. By mandating that companies that
use open-source software in what they sell to the U.S. government subject the open-
source code they use to the same security processes as their own code, contribute fixes,
make coordinated disclosures to the repository maintainers, avoid dead projects, and
shoulder the responsibility of maintaining projects, the U.S. government can move the
needle toward improved cybersecurity at scale. Additionally, ensuring that open-source
software integrated into government products and services is secure could require
additional support to smaller developers that might otherwise struggle to adhere to all
of these requirements. By enforcing FAR and the FedRAMP, the U.S. government can
also force disclosure of known flaws in products, a win for open-source developers,
the companies that integrate open-source software, and the consumers that use these
goods and services.

thereby provide a detailed list of components used in a software product

0
o
3
T
)
3.
0
(7]
)
3
o
o
T
(]
3
[72]
o
c
=
(2]
(]
[}
(1]
<
()
o
T
0
=
0
(2]
=2
o
c
o
[}
Q
o
T
[
wn
v
o
=
7]
[0)]
S
[@X

(For more information on the benefits of leveraging SBOMs to strengthen

cybersecurity, see page 13 of Securing the Modern Economy: Transforming.
Cybersecurity Through Sustainability). It is important to note that, if not kept up to date,
there can be discrepancies between SBOMs in repositories and the code that is actually
running. If properly maintained, these lists can be used by enterprises and agencies
alike to identify open-source components that contain particular vulnerabilities once
those vulnerabilities have been disclosed. These lists can also be used proactively to
understand which components represent the greatest risk and which need the most
support. SBOM adoption has been slow because many companies lack the knowledge
and tooling to build SBOMs, have not grasped the potential benefits of an SBOM versus
the perceived effort of creating one, or require support in maturing processes. A lack of
SBOM standardization further impedes adoption. However, widespread adoption would
make it easier to determine the most widely used libraries, a highly useful development
in terms of incident and risk management. Fortunately, the U.S. and other governments,
as well as large-scale software integrators and dependents, have levers like procurement

Castles Built on Sand April 2023 @ securityandtechnology.org

https://www.epa.gov/greenerproducts/selling-greener-products-and-services-federal-government
https://www.epa.gov/greenerproducts/selling-greener-products-and-services-federal-government
https://www.ntia.gov/SBOM
https://publicknowledge.org/wp-content/uploads/2021/11/Securing_the_Modern_Economy-Transforming_Cybersecurity_Through_Sustainability_FINAL_4.18.18_PK.pdf
https://publicknowledge.org/wp-content/uploads/2021/11/Securing_the_Modern_Economy-Transforming_Cybersecurity_Through_Sustainability_FINAL_4.18.18_PK.pdf

they can use to make SBOMs essential in the marketplace. Further, CISA’s efforts to
uplift the value of SBOMSs and help less mature organizations develop effective ones are
driving improvements in their creation and adoption.

The U.S. government and private industry should support and expand

/g initiatives like the Open-Source Technology Improvement Fund Managed
F/ widely used and rarely updated. Other proposals, such as the Sovereign

Tech Fund, aim to direct funding toward improving security measures in such software.

It is also worth exploring new models to assess open-source risk, as the current lack

of standardized risk measurements results in largely subjective choices about which

libraries to secure. Rectifying the current system should include a comprehensive

strategy based on quantified risk to select which projects to prioritize.

Organizations that employ open-source components should implement
& quantitative risk assessment to enable effective communication around

and response to vulnerabilities. Such assessments should take into account

evaluations from Information Sharing and Analysis Centers and other
relevant bodies like OpenSSF, scoring systems such as the Forum of Incident Response
and Security Teams' Common Vulnerability Scoring System Version 3.0 (CVSS V3), as
well as organization-specific context where possible. While the CVSS V3 and similar
scoring systems provide a general sense of the severity of a given vulnerability, without
context they do not provide enough information for an organization to adequately
understand and respond to the risk that a particular vulnerability represents (For more
information on the challenges posed by existing scoring systems, see Appendix 2: How
Did It Happen?). As a result, companies should view CVSS V3 as a starting point for
determining risk, and enrich this score with company-specific knowledge before taking
action.

— Developers should explore the benefits and challenges of introducing
memory safety as a way to combat vulnerabilities in software. The

) Chromium Project found that /0% of serious bugs are memory safety
bugs into their C and C++ code. While introducing memory safety would be resource-
intensive, especially for projects that already exist, there is an opportunity for the open-
source community to have a conversation about common practices that may uplift code
security as a whole, potentially even eliminating entire categories of vulnerabilities.

Castles Built on Sand April 2023 @ securityandtechnology.org

https://www.cisa.gov/sbom
https://www.cisa.gov/sbom
https://ostif.org/google-is-partnering-with-open-source-technology-improvement-fund-inc-to-sponsor-security-reviews-of-critical-open-source-software/
https://ostif.org/google-is-partnering-with-open-source-technology-improvement-fund-inc-to-sponsor-security-reviews-of-critical-open-source-software/
https://sovereigntechfund.de/files/SovereignTechFund_Machbarkeitsstudie_en.pdf
https://sovereigntechfund.de/files/SovereignTechFund_Machbarkeitsstudie_en.pdf
https://openssf.org
https://www.chromium.org/Home/chromium-security/memory-safety/
https://www.chromium.org/Home/chromium-security/memory-safety/
https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-code/
https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-code/

PY Sector actors should incentivise more diverse skill sets in open-source
""‘ software development and maintenance. Creating secure open-source

fg®

software requires more than just writing code, and the sector would benefit
from the addition of experts across a range of skill sets, including but not
limited to cybersecurity, risk management, and project management. The inclusion of
experts from a range of fields would ultimately make the development of open-source
software safer and more secure. To enable this diversity, funding opportunities should
be explored with an eye toward rethinking the structure of participation in open-source
software maintenance and the incentives that underpin this structure.

Reexamining Approaches to Vulnerability
Management and Mitigation to Ensure They
Account for Open-Source Software

Even with a more proactive posture and a shift toward a shared responsibility model,
some vulnerabilities will still arise. With this in mind, there are a number of ways to
increase the effectiveness of reactive approaches to vulnerabilities. As evidenced by the
Heartbleed and Log4j vulnerabilities, it is critical that vulnerability mitigation processes
include comprehensive plans to work with governments, the private sector, and security
researchers (For a comparative case study of the Log4j and Heartbleed vulnerabilities,
see Appendix 3: Shortening the Maturation Curve: The Log4j and Heartbleed
Vulnerabilities). These partnerships will form a stronger foundation upon which to
execute reactive approaches. The following framework offers a more sustainable path to
proactive vulnerability management and mitigation within a shared responsibility model.

Vulnerability management should become more closely aligned
ﬁ with threat intelligence through the sharing of tools and skills. Most
4—’ importantly, vulnerability management will have to break traditionally slow

iterative cycles and become more agile. Stakeholders understand that
vulnerabilities can be developed into exploits within hours of disclosure, and it is critical
that all involved parties have the necessary intelligence and fluidity to respond. It is
also critical that vulnerability management efforts comply with existing risk assessment
structures like scoring such that each response is appropriately prioritized. Addressing
end-product security will require a better approach to patching open-source projects,
including more efficient patch development and implementation.

Castles Built on Sand April 2023 @ securityandtechnology.org

The U.S. government, including CISA and the Office of the National Cyber

Director (ONCD), should maintain threat intelligence teams that provide

contextual vulnerability management assistance, especially to small and

medium-sized businesses. Specifically, adapting the information collected
by these teams in a way that is accessible to those at or under the cybersecurity poverty
line—such as by outlining best practices and actions to avoid—would provide much-
needed guidance to businesses without technical expertise (For more information on the
cybersecurity poverty line, see Appendix 4: A Note on the Cybersecurity Poverty Line).
Threat intelligence teams understand internal software and systems, like network security
teams, and are familiar with reported vulnerabilities, like incident response (IR) teams.
Additionally, they have the added capacity to proactively scan for systems that may be
vulnerable and can provide context into an actor's tactics, techniques, and procedures
throughout an active vulnerability instance. Many prolific forms of cybercrime, including
ransomware, are evolving rapidly to exploit open-source software vulnerabilities, which
are particularly attractive to affiliates leveraging simple reusable attacks given their
ubiquity and long tail to remediation (For more information on long tails, see Appendix 2:
How Did It Happen?).

The U.S. government should create a database of products known to
contain vulnerable dependencies. For example, Workspace ONE Access
Connector and VMware Identity Manager Connector are known to contain
Apache Log4j. While CISA's Known Exploited Vulnerabilities Catalog
tracks high-profile exploits, it does not identify products or services that may contain a
vulnerability unless they experience a high-profile attack. While creating such a database
would present a significant challenge, it would ultimately enable the maintenance
of lists of products and versions that are a risk. Searching through VMware’s entire
knowledge base to check for such vulnerabilities is not a useful alternative, and the
software ecosystem would benefit from a one-stop shop to identify known vulnerabilities.
The database could also include configurations of software that expose potential
vulnerabilities. This would help mitigate the risk posed by companies that claim their
products are not vulnerable when in reality a simple configuration change could expose
the vulnerable code to exploitation.

Castles Built on Sand April 2023 @ securityandtechnology.org

https://www.cisa.gov/known-exploited-vulnerabilities-catalog
https://kb.vmware.com/s/

Conclusion

The software ecosystem has an opportunity to improve current approaches to
addressing open-source software vulnerabilities. In managing software risks,
organizations generally rely on network security teams to identify known vulnerabilities
within their networks (For more information on approaches to vulnerability management,
of a vulnerability being exploited, these teams work alongside IR teams and other
consultants.

This reactive model only works in instances of a known threat where mitigation efforts
can outpace threat actors. In the case of the Log4j vulnerability, many companies do not
know if they have Log4j in their products; the only way it can be found is to open up the
code. To make matters worse, Log4j has a long tail, meaning it will keep popping up in
products and services for years to come. This risk management model is inefficient and
unsustainable, as it requires responders and other consultants to maintain around-the-
clock defense. Given the rapidly shifting ecosystem, it is becoming evident that a cultural
shift in the cybersecurity of open-source software is necessary.

Rather than a reactive approach, the software development ecosystem must shift code
review to an earlier stage in the development and deployment lifecycle. This report
advocates for shifting open-source software security to a shared responsibility model,
redoubling support for existing secure software development frameworks, policies, and
licenses, and reexamining approaches to vulnerability management and mitigation to
ensure they account for open-source software. These changes will reduce the pressure
on the open-source developers who build and maintain the software underpinning a vast
array of goods and services.

There is a role for everyone to play in securing the open-source ecosystem.
Governments should incentivise companies that employ open-source code to commit
resources to code maintenance, support existing secure software development
frameworks and policies, and leverage federal procurement to increase baseline
cybersecurity in open-source products. Further, the U.S. government should examine
ways to maintain threat intelligence teams that provide contextual vulnerability
management assistance through agencies like CISA and NIST in collaboration with
offices such as the ONCD.

Castles Built on Sand April 2023 @ securityandtechnology.org

Open-source developers deserve more than applause for the energy, time, and
resources they dedicate, often uncompensated, to the software ecosystem. Developers
and other key software stakeholders should explore pathways to incentivize the
implementation of memory safety to combat potential vulnerabilities in products, and
adhere to SBOMs and open-source licensing schemes.

Finally, companies employing open-source software should dedicate resources to
maintaining open-source projects; develop and enforce quantitative risk assessments
that take organizational context into account; and not rely entirely on CVSS V3 base
scores, which offer an incomplete assessment of risk.

Castles Built on Sand April 2023 @ securityandtechnology.org 10

Appendices

Appendix 1: What Happened?

Timeline

On December 9, 2021, the MITRE Corporation publicly designated a Common

cybersecurity vulnerabilities). Because so many developers use Log4j as a foundational
piece of their products and services, the resulting risk from this vulnerability posed to
applications across the Internet was profound. As a result, there was significant concern
about the reach and the implications the vulnerability would have both immediately and
over time.

In the hours that followed the public disclosure, cybersecurity teams, volunteer
researchers, and response firms dropped everything to begin an around-the-clock
campaign to mitigate the vulnerability. As they worked, it became increasingly clear

that Log4j’s flaw posed a profound threat to the integrity of the Internet itself. A unique
set of factors created the danger of the vulnerability, namely the capacity it afforded
malicious actors to perform unauthenticated RCE in a commonly used, easily overlooked

Castles Built on Sand April 2023 @ securityandtechnology.org 1"

https://blog.sonatype.com/why-did-log4shell-set-the-internet-on-fire
https://blog.sonatype.com/why-did-log4shell-set-the-internet-on-fire
https://cve.mitre.org/

machines across the globe that utilize unpatched versions of Log4j are vulnerable to
exploitation. Log4j illustrates the significant cybersecurity threat endemic to the current
approach to open-source software.

Within hours of the public announcement, a security researcher dropped a proof-of-
concept (POC) exploit for Log4j on Twitter, broadly enabling both legitimate network
defenders and malign actors to leverage this exploit.

Log4j Vulnerahility Identification Timeline

NOVEMBER 24, 2021 DECEMBER 11, 2021 DECEMBER 28, 2021
Chen Zhaojun Vulnerability Log4j version
reports Log4j CVE-2021-44832 2.17.0 released
vulnerability discovered

DECEMBER 5, 2021 DECEMBER 15, 2021

Apache developers Log4j version 2.16.0

create a bug ticket released

to resolve the issue

NOVEMBER 2021 DECEMBER 2021 JANUARY 2022

NOVEMBER 26, 2021

MITRE database DECEMBER 14, 2021
assigns Log4j CVE- Vulnerability CVE-2021-
2021-44228 45046 discovered

DECEMBER 9, 2021

Apache discloses DECEMBER 16, 2021
the vulnerability Vulnerability

on the MITRE CVE-2021-45105
CVE list discovered

Security researchers played a critical role in the days following the public identification

network defenders and threat actors to leverage the accelerated exploit development.
However, it is important to note that this development largely benefited defenders, as
rapid exploit development by threat actors typically occurs behind closed doors. For
malicious actors, successful exploitation led to unauthenticated RCE, providing access
to servers in organizations across the world and allowing them to deploy malware and

Castles Built on Sand April 2023 @ securityandtechnology.org 12

https://industrialcyber.co/reports/csrb-report-not-aware-of-any-significant-log4j-based-attacks-on-critical-infrastructure-systems/
https://techcrunch.com/2022/09/08/north-korea-lazarus-united-states-energy/amp/?guccounter=1
https://techcrunch.com/2022/09/08/north-korea-lazarus-united-states-energy/amp/?guccounter=1
https://www.zdnet.com/article/log4j-flaw-attackers-are-making-thousands-of-attempts-to-exploit-this-severe-vulnerability/

maintain access to compromised networks. Security researchers also identified affected
software and hardware products, and began helping to take down attackers and notifying
vulnerable parties.

Ultimately, CISA deemed the Log4j vulnerability so serious that it issued an emergency
directive, while the Federal Trade Commission issued a relatively rare warning
instructing companies to remediate the vulnerability. In January 2022, the White House
convened an open-source security summit seeking collaboration from industry giants to
understand the mechanisms that could prevent this type of vulnerability from happening
again. Further, in February, the U.S. Senate Committee on Homeland Security and
Governmental Affairs called a hearing around Log4j, inviting the president of the Apache
Software Foundation as well as several private sector and nonprofit experts to testify
about the context surrounding Log4j and its associated vulnerability.

With the addition of the Log4j vulnerability by Apache to MITRE’s CVE database and the
National Vulnerability Database, MITRE acknowledged that the vulnerable Java Naming

and Directory Interface (JNDI) that Log4j uses was committed to the original codebase in
July 2013, over eight years before the vulnerability was publicly disclosed.

The time between the introduction of the code and delayed discovery of the vulnerability
highlights a problem with vulnerability management: it largely functions as a reactive
business practice of quashing vulnerabilities when they arise, instead of proactively
studying and testing ubiquitous open-source libraries for dangerous vulnerabilities
before they can be exploited. During the eight-year period in which Log4j included this
vulnerable code, it would have been possible for a threat actor to have identified and
selectively leveraged this vulnerability as part of their operations.

Castles Built on Sand April 2023 @ securityandtechnology.org

13

https://www.cisa.gov/news/2021/12/17/cisa-issues-emergency-directive-requiring-federal-agencies-mitigate-apache-log4j
https://www.cisa.gov/news/2021/12/17/cisa-issues-emergency-directive-requiring-federal-agencies-mitigate-apache-log4j
https://www.ftc.gov/news-events/blogs/techftc/2022/01/ftc-warns-companies-remediate-log4j-security-vulnerability
https://www.cyberscoop.com/white-house-log4j-open-source-software-security/
https://www.hsgac.senate.gov/hearings/responding-to-and-learning-from-the-log4shell-vulnerability

Exploitation

Log4j Exploitation Timel

DECEMBER 1, 2021

ine

DECEMBER 13, 2021

JANUARY 4, 2022

Cloudfare Sophos detects Microsoft warns
researchers “hundreds of that Dev-0401is
find attempts thousands” of exploiting CVE-
to exploit Log4Shell remote 2021-44228
Log4Shell execution attempts vulnerability
to deploy
DECEMBER 15, 2021 ransomware

State actors
detected deploying
Log4Shell attacks

JANUARY 2022 FEBRUARY 2022

DECEMBER 20, 2021
Cryptolaemus
warns Log4Shell
exploited to infect
Windows devices
with Dridex and
Linux devices with
Meterpreter

DECEMBER 2021

FEBRUARY 2022
Cisco Talos
observes North
Korean state-
sponsored actor
targeting U.S.
energy providers

DECEMBER 9, 2021
Apache discloses
the vulnerability
on the MITRE
CVE list

The breadth of Log4Shell exploitation offers a useful case study for the future

previously unknown pathways such as web forms. Thus, threat actors could leverage the
vulnerable JNDI lookup feature to inject code into servers with remote-enabled services,
allowing access from a geographical distance through network connections.

The exploitation pathway changed rapidly in the weeks following public disclosure of
Log4Shell, with actors evolving the most prevalent payloads—or malware intended for
the victim—to bypass detection and protection methods like web application firewall
(WAF) rules. Log4Shell is a relatively unique case in malicious code detection because
threat actors were able to adapt payloads to avoid new WAF rules almost immediately,
keeping threat responders on the defensive throughout the beginning of the exploitation.

Castles Built on Sand April 2023 @ securityandtechnology.org 14

https://news.sophos.com/en-us/2021/12/12/log4shell-hell-anatomy-of-an-exploit-outbreak/
https://news.sophos.com/en-us/2021/12/12/log4shell-hell-anatomy-of-an-exploit-outbreak/

The secondary path of exploitation came in the form of information theft using the
domain name system (DNS) protocol as a covert channel attack pathway. While the
individual vulnerability is relatively difficult to leverage into a usable RCE, information
theft is low-hanging fruit, which makes Log4Shell problematic for the organizations that
use the Log4j library by allowing actors to use the exploit to retrieve information from
compromised servers or applications.

Primary Attack Pathways for Log4j Vulnerability

Threat actor begins attack
Starting point

4

Attacker sends a request to a target server running Log4j that points to a
malicious Lightweight Directory Access Protocol (LDAP) server

4

The vulnerable server with Log4j logs the malicious request

4

Log entry is parsed, creating a malicious request

4

Target performs DNS lookup and connects with malicious LDAP server

4 4

RCE Pathway Critical Information Disclosure Pathway
The malicious LDAP server then responds The vulnerable server with Log4j includes secrets or
with a malicious Java data class/object credentials in the request
The victim server with Log4j retrieves the malicious Outbound DNS request contains
Java data class/object and executes it secrets or credentials
Combined, this attacker route could allow for The attacker recieves the DNS request, which contains
attackers to execute code remotely (RCE) secrets or credentials

Using Log4Shell to Deliver Malware

In the days after the Log4j vulnerability disclosure, cybersecurity researchers at Sophos
detected hundreds of thousands of attempts to remotely execute code on a wide array
of industry targets, including cloud service providers, virtual service providers, and
healthcare organizations. These reports identified attackers attempting to leverage

including Mirai, Tsunami, and Kinsing attempting to exploit Log4j to exponentially

Castles Built on Sand April 2023 @ securityandtechnology.org

15

https://news.sophos.com/en-us/2021/12/12/log4shell-hell-anatomy-of-an-exploit-outbreak/
https://www.zdnet.com/article/free-money-cyber-criminals-are-installing-cryptojacking-malware-on-unpatched-microsoft-exchange-servers/
https://www.zdnet.com/article/log4j-flaw-attackers-are-making-thousands-of-attempts-to-exploit-this-severe-vulnerability/

ransomware strains like Nemesis Kitten and Khonsari launched attacks against enterprise
infrastructure, while ransomware operators like Lockbit and nation-state hackers worked
to develop sophisticated ways to take advantage of the new attack vector. Researchers
at Microsoft also warned about attempts to install Cobalt Strike on vulnerable systems,

a strategy that could allow attackers to steal usernames and passwords from a host of
ransomware group used the Log4j vulnerability to gain access to some VMware servers,
allowing Conti to encrypt some virtual machines. The Log4j vulnerability is a unique case
because exploits did not evolve naturally over time; instead, multiple pathways were
explored simultaneously in what appeared to be a race to see which could be leveraged
first.

distributed denial of service malware (recent news report from BleepingComputer
about a new botnet that targets Linux-based systems and uses the Log4j vulnerability to
infect new hosts) and crypto-mining campaigns (detailed report on actors that used the
Log4j vulnerability to install crypto-mining malware on computers from Darktrace, an IT
company that focuses on cyberdefense). While the exploit was initially more difficult to
leverage in a sophisticated way that enabled RCE, the more readily available pathway
involves triggering the exploitation via JNDI lookups for data exfiltration from servers

for important information, in one instance allowing threat actors to see information
related to Amazon Web Services (AWS) secret access keys that could have led to AWS
instances being taken over, according to cloud service company Akamai. Data exfiltration
leveraging the Log4j vulnerability is difficult to prevent because it would require shutting
off a server’s contact with DNS, an infeasible solution.

Barriers to Exploitation

While the Log4Shell exploit may be easy to trigger, using it to successfully inject
malware requires malicious actors to exploit the Log4j library through an asynchronous
process where some functions run “in the background,” adding complexity to the attack
process. The actor uses a JNDI lookup to push malicious code into a server, but that
code needs to be executed to actually work, which can be difficult in an asynchronous
environment. Egress rules—the rules that specify what kind of information can enter
and exit an application—vastly complicate efforts to retrieve usable output from JNDI
RCE. Additionally, successful exploitation of an RCE requires threat actors attempting

Castles Built on Sand April 2023 @ securityandtechnology.org

16

https://www.zdnet.com/article/khonsari-ransomware-iranian-group-nemesis-kitten-seen-exploiting-log4j/
https://www.bleepingcomputer.com/news/security/conti-ransomware-uses-log4j-bug-to-hack-vmware-vcenter-servers/
https://www.microsoft.com/security/blog/2021/12/11/guidance-for-preventing-detecting-and-hunting-for-cve-2021-44228-log4j-2-exploitation/
https://www.advintel.io/post/ransomware-advisory-log4shell-exploitation-for-initial-access-lateral-movement
https://www.bleepingcomputer.com/news/security/new-linux-botnet-exploits-log4j-uses-dns-tunneling-for-comms/
https://www.bleepingcomputer.com/news/security/new-linux-botnet-exploits-log4j-uses-dns-tunneling-for-comms/
https://darktrace.com/blog/exploring-a-crypto-mining-campaign-which-used-the-log-4j-vulnerability
https://www.akamai.com/blog/security/a-log4j-retrospective-part-2-data-exfiltration-and-remote-code-execution-exploits
https://www.akamai.com/blog/security/a-log4j-retrospective-part-2-data-exfiltration-and-remote-code-execution-exploits

to leverage Log4Shell to estimate where the RCE would be effective in the architecture
of an application. A malicious JNDI lookup through Log4j is not inherently successful or
effective. This means that the highest-risk applications are those that contain code that
has a known, reliable exploitation pathway located in an architecture that the attacker
understands.

The Politics of Vulnerability Disclosure

That advanced persistent threats (APTs) are well-resourced to utilize Log4Shell points
to a complicating factor of open-source software security: the politics of vulnerability
disclosure. The political undercurrent of the Log4j disclosure is a bellwether of the
future of vulnerability management—a process marred by increasing globalization and
exponential interconnectedness among interdependent applications. As this future is
realized, leaks that allow malicious actors to compromise vulnerabilities before a fix can
be deployed threaten to radically change the landscape of threat hunting and mitigation
and the systems they underpin.

New regulations around zero-day vulnerabilities passed by the Chinese government in
July 2021 contextualized and complicated the Log4j vulnerability disclosure. The nhew
regulations instruct Chinese citizens who identify new vulnerabilities to “tell the [Chinese]
government, which will decide what repairs to make,” according to reports from the
Associated Press. In this case, upon public release of the exploit, the Log4j team noted
that Chen Zhaojun, a security researcher from the Alibaba Cloud Security Team, reported
the vulnerability on November 24, 2021, two weeks before the public disclosure—despite
the recent change to Chinese disclosure legislation.

China’s Ministry of Industry and Information Technology swiftly condemned the disclosure
and instructed the Cyberspace Administration of China to suspend its information-sharing
agreement with Alibaba Cloud for six months, citing the Log4Shell disclosure as the
reason for suspending the partnership. The Chinese government also levied sanctions
against Alibaba. The suspension was an arbitrary punishment for Alibaba’s responsible
disclosure, designed to embarrass the company and dissuade others from sharing
software vulnerabilities, creating a sort of chilling effect around vulnerability sharing.

The fact that researchers responsibly disclosed the vulnerability to the Apache Software
Foundation in the case of Log4j was a result not of international norms and standards,
but a sense of moral responsibility on the part of developers at Alibaba. In this way, the
discovery and disclosure of a vulnerability in Log4j was an instance of personal judgment

Castles Built on Sand April 2023 @ securityandtechnology.org

17

https://apnews.com/article/europe-business-technology-china-hacking-72608ea035dc3a8be2909e28cece3f73
https://apnews.com/article/europe-business-technology-china-hacking-72608ea035dc3a8be2909e28cece3f73
https://logging.apache.org/log4j/2.x/security.html
https://logging.apache.org/log4j/2.x/security.html
https://www.zdnet.com/article/log4j-chinese-regulators-suspend-alibaba-partnership-over-failure-to-report-vulnerability/
https://www.zdnet.com/article/log4j-chinese-regulators-suspend-alibaba-partnership-over-failure-to-report-vulnerability/

rather than the result of a standard process, further underscoring the existential threat
posed by the current approach to vulnerability management.

On November 26, two days after Chen Zhaojun reported the original Log4j vulnerability,

eight days prior to the public announcement of the vulnerability.

Appendix 2: How Did It Happen?

What is Open-Source Software?

Open-source software libraries, packages, and modules present batches of prewritten
code that can be imported into programs or applications to speed up the software
development process. Given the scale of open-source use cases, this type of software
arguably forms the foundation for the development of the future Internet, in addition
sets of prewritten code that performs certain tasks—like Log4j exist across hundreds
of programming languages to aid with data configuration, documentation, message
templates, subroutines, classes, values, and type specifications. Libraries allow for the
that library without having to implement the behavior itself. In essence, programming
libraries provide shortcuts that save stakeholders time and money in software and
program development.

applications. Logging is a critical feature for applications because it allows developers
to understand how both software and users are interacting with a given software
platform. Logging registers information about the various events, use cases, and errors
that occur within an application. As a result, developers can effectively debug software

events within application and storage management software, software development
tools, virtualization software, and some video games. The Log4j library is one of the most
popular logging tools for Java applications and has a wide range of uses, from logging

Castles Built on Sand April 2023 @ securityandtechnology.org

18

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44228
https://blog.cloudflare.com/exploitation-of-cve-2021-44228-before-public-disclosure-and-evolution-of-waf-evasion-patterns/
https://www.idtech.com/blog/what-are-libraries-in-coding
https://blog.alexdevero.com/programming-languages-libraries-and-frameworks/#what-is-a-library
https://logging.apache.org/log4j/2.x/
https://www.hsgac.senate.gov/imo/media/doc/Testimony-Nalley-2022-02-08.pdf
https://www.hsgac.senate.gov/imo/media/doc/Testimony-Nalley-2022-02-08.pdf

application behavior to collecting information for business analytics. Java is an extremely
popular programming language because it can be used across many architectures.

The number of usable libraries has exploded with the continuing development of
programming language, a number that grows by nearly 1,000 daily. A single vulnerability
in any of these libraries has the potential to cause massive security issues for dependent
applications. The infrastructure and ubiquitous use of open-source software means that
cybersecurity operations will likely feel the impact of vulnerabilities such as Log4j for
years to come. While many observers of the crisis point out Log4j’s long tail, beyond
patching, we have yet to see a comprehensive plan for how to root out this vulnerability
from the products and services it inhabits.

Between August and November 2021, the Log4j library was downloaded 28.6 million
times, placing it in the top 0.003% percentile of popular libraries, according to research
from Sonatype. In the weeks after the Log4j disclosure—despite the efforts of the
Apache Software Foundation to point users toward the updated Log4j library—nearly
65% of downloaded versions were the vulnerable version of Log4j. Four months

after Apache disclosed the Log4j vulnerability to MITRE, security firm Rezilion found
repository of Java libraries, were still vulnerable to the Log4Shell exploit, highlighting
how difficult it is to get developers to update their software packages. Further, Rezilion
identified over 90,000 public web servers that were vulnerable to the Log4Shell exploit.

There are over 500,000 active repositories that depend on the original Log4j library,
according to the Log4j dependency graph on GitHub. In addition, according to Google

well as service providers like N-able and ConnectWise. This is likely only the tip of the
iceberg. From the Internet of Things to automotive use components, many embedded
systems include Log4j, and there is no way to know without directly examining the code
to verify the versions used.

Because programming libraries provide shortcuts in software and program development,
even billion-dollar software companies use open-source libraries to build software. Given
how widespread open-source infrastructure is today, vulnerabilities like Log4j take much
longer to fully remediate, a concept known as a “long tail.” Though the damage may

not be immediately severe, addressing the Log4j vulnerability is like removing asbestos

Castles Built on Sand April 2023 @ securityandtechnology.org

19

http://www.modulecounts.com
http://www.modulecounts.com
https://blog.sonatype.com/why-did-log4shell-set-the-internet-on-fire
https://www.rezilion.com/wp-content/uploads/2022/04/Log4Shell-4-Months-Later.pdf
https://github.com/apache/logging-log4j1/network/dependents
https://security.googleblog.com/2021/12/understanding-impact-of-apache-log4j.html
https://www.cybersecuritydive.com/news/log4j-what-is-known/611718/
https://www.cybersecuritydive.com/news/log4j-what-is-known/611718/

from an old building: the vulnerability is just as pervasive, difficult to locate, and capable
of causing problems well into the future. In addition, the vulnerability is often well-
hidden behind complex systems that are not exposed to the Internet. Remediating the
vulnerability necessitates cooperation from the network owners, who must lower some
protections and open the system to outside parties. Each iteration of the code utilizing
Log4j requires individual patching, which means that millions of apps will need to be
individually patched—a process that will likely take years to fully realize.

Aside from saving development time, the most important impact of open-source software
is that it allows software development companies to maintain their position at the
forefront of innovation. Open-source software is one of the primary factors behind the
explosion of cutting-edge software development in recent decades, with developers
able to focus on creating new software rather than rebuilding the same packages many
times over. This added capacity has been a key source of economic development and
innovation in the twenty-first century, highlighting the importance of maintaining and
securing open-source libraries. As organizations embrace software development and
digital transformation, open-source software will become increasingly foundational to the
Internet and next-generation software development.

Finally, open-source software is often critical to the infrastructure of software
development companies. Linux, an open-source operating system, runs all of the world’s
500 supercomputers and 23 of the top 25 websites in the world, according to reporting
by 99firms. High-level computing, software development, and website development
would all be much more difficult and time-consuming without open-source software.
Given its importance to development, open-source software has a significant impact on
the ecosystem as a whole.

The Economics of Open-Source Software

The economic impact of open-source software is difficult to gauge because organizations
generally use the software without returning any metrics around value or usage back to
the original developers. In the UK, for example, open-source software contributes $59
billion each year to GDP and provides an estimated $63 billion in potential value for UK
businesses, according to a study from OpenUK. The lack of shared data about usage and
integration from organizations that utilize open-source software is an important signal

of a structural issue prevalent in its use. Although many organizations use open-source
software, few provide data or feedback in return for the functionality provided.

Castles Built on Sand April 2023 @ securityandtechnology.org

20

https://99firms.com/blog/linux-statistics/#gref
https://99firms.com/blog/linux-statistics/#gref
https://99firms.com/blog/linux-statistics/#gref
https://99firms.com/blog/linux-statistics/#gref

Software giants widely utilize open-source software to build monetized platforms,
technologies, and services, but do not always invest those cost-savings in supporting
the foundational software upon which they build these profitable services. The Linux
foundation, for example, estimates that open-source software constitutes 70-90% of any.
given piece of modern software solutions. These companies use open-source software
through a commercial license, which requires very little accountability. Companies
integrate open-source software into their own software in unique and novel ways, which
can open the door for new vulnerabilities, especially if those organizations do not share
nonstandard configurations with the original software foundation.

The unbalanced relationship between organizations and open-source software projects
exists because companies that utilize this software embrace business models that rely
on concepts like lean startup and agile development, and turn to open-source libraries to
shorten their development curve. Without proper systems in place to track and maintain
codebases and their deployment, vulnerabilities within open-source and third-party
software libraries can cause cascading failures throughout the Internet, even if they
usually do not.

What Happens When Things Go Wrong?

To date, responding to critical vulnerabilities has been a reactive process, with IR teams
working on an emergency basis. This posture has been effective against vulnerabilities
like Heartbleed, in which there was one pathway for exploitation. However, issues like
Log4j offer multiple pathways for exploitation, which presents a challenge because
each new pathway may require dedicated engineering time to develop detection
countermeasures. Log4j underscores the criticality of vulnerabilities with rapid maturation
and a long tail. As new vulnerabilities arise and mature at an increasingly rapid pace,
relying on a reactive model is inefficient (For more information on rapid maturation, see
Appendix 1: What Happened?). Log4j has highlighted the pressing need to rethink the
current model, which includes examining the way that incident responders prioritize and
respond to vulnerabilities.

Reactive models tend to be driven by compliance and static measures like risk scoring
systems that determine how and when IT and IR teams respond to incidents. Scoring
systems lack crucial context and are regularly altered, resulting in workflows that do not
match the urgency and severity of threats (see Reexamining Approaches to Vulnerability.
Management and Mitigation). For example, Log4j V215 was identifiably vulnerable,

but its risk score was initially set at three (defined as to be repaired in several weeks).

Castles Built on Sand April 2023 @ securityandtechnology.org

21

https://www.linuxfoundation.org/blog/blog/a-summary-of-census-ii-open-source-software-application-libraries-the-world-depends-on#:~:text=Introduction,and%20non%2Dtech%20companies%20alike
https://www.linuxfoundation.org/blog/blog/a-summary-of-census-ii-open-source-software-application-libraries-the-world-depends-on#:~:text=Introduction,and%20non%2Dtech%20companies%20alike

After outcry from security experts, the score increased to nine (to be repaired in hours).
The vulnerability in Log4j V2.15 requires complex preconditions, which means that the
vulnerability poses different threats to different organizations depending on their relative
exposure. Given that the vulnerability score varied widely in assessments over time (from
three to nine) some organizations diverted resources to deal with a vulnerability that may
not have impacted them. This could be in part because accurate risk scoring exists only
in the context of organizational instantiation.

These static measures similarly complicated the response to a denial of service
vulnerability found in Log4j V2.16, which received a score of seven. Similar to Log4;j
V215, V2.6 is vulnerable only in nonstandard configuration. Though compliance dictated
that all organizations needed to fix the vulnerability in seven days, the vulnerability only
impacted organizations that adjusted the default parameters of Log4j. The result was the
same: static measures of vulnerability, severity, and urgency did not take into account the
context and nuance surrounding the vulnerability, because any final score is meant to be
created at the organizational—or even system—Ilevel. That this does not happen routinely
results in wasted time, energy, and resources.

The reactive model has several other drawbacks. First, this model does not take into
account the idea that vulnerabilities can be chained together. Low-risk vulnerabilities
that have a low score can be chained together to create a higher-risk vulnerability.
One example of such an exploit is the Hot Potato Windows Privilege Escalation, which
achieves a man-in-the-middle attack. In this escalation, a hacker will try to log into a
victim’s server, and when the server asks for a password the hacker gives a reply that
catches the hash sent by the server. This hash can then be cracked—a potentially time-
intensive process—or leveraged as part of a pass-the-hash attack to gain access to target
systems. Taken independently, these vulnerabilities might each be of low or medium
severity, but become much more dangerous when combined. This is another reminder
that the current scoring systems and the ways they are employed often miss important
context.

Context is key to responding to vulnerabilities, such that successful responses require
a more complex system of vulnerability management, rather than the use of IR systems
that are driven by compliance. A more proactive system could include creating and
managing threat intelligence teams that provide contextual assistance for vulnerability
management. Threat intelligence teams understand the internal software and systems,
like IT teams, and are familiar with reported vulnerabilities, like IR teams. Additionally,
however, they have the capacity to proactively scan for vulnerable systems and can

Castles Built on Sand April 2023 @ securityandtechnology.org

22

https://jlajara.gitlab.io/Potatoes_Windows_Privesc#:~:text=Hot%20Potato%20was%20the%20first,Server%202008%2C%20and%20Server%202012.
https://pentestlab.blog/2018/05/08/nbns-spoofing/
https://attack.mitre.org/techniques/T1550/002/

provide context into an actor's tactics, techniques, and procedures during an active
vulnerability exploitation.

The technical shortcomings of the reactive model are evident, especially in response

to exploits like Log4j that mature, become weaponized, and are deployed by hostile
actors in a matter of hours. Further complicating this issue is the difficulty faced by small
development teams in maintaining open-source resources. When using open-source
code, a developer generally selects code that will be useful for their project and adds it.
This means open-source code projects lack a proper auditing process and often carry
redundant code that is completely unnecessary and potentially a security risk.

The Log4j example reflects this, especially with regard to the library’s low percentage of
functionality actually used when incorporated into projects. The vast majority of cases
that integrate Log4j into a platform do not use the JNDI lookup feature that carries the
Log4Shell vulnerability, which was added as an edge case function in 2013 and then
largely forgotten. This kind of redundancy translates rapidly into increased risk.

This kind of risk is extremely difficult to combat because it requires that libraries

be tested, inspected, and updated on a regular basis. Despite the massive scale of
implementation, twelve full-time employees and two contributors maintain the Log4j
library. Addressing open-source software vulnerabilities requires reassessing the way
software developers maintain open-source code.

If the maturation curve is becoming shorter for all actors, the static scoring system

fails to account for context, and the open-source development teams tasked with
maintaining the code are under-resourced, a reactive model of incident and vulnerability
management may be too risky for some organizations. It is time for a new model.

Castles Built on Sand April 2023 @ securityandtechnology.org

23

https://logging.apache.org/log4j/2.x/team.html

Appendix 3: Shortening the
Maturation Curve: The Log4j
and Heartbleed Vulnerabilities

As highly sophisticated groups begin to adapt and iterate exploits more quickly, it is
critical to evolve to match the changing vulnerability ecosystem. Log4j is not the first
open-source library to have a massive and misunderstood vulnerability. In 2014, members
the OpenSSL cryptography library used to manage many of the cryptographic algorithms
deployed in various Internet security standards. When Apache first disclosed Heartbleed
to MITRE, estimates claimed that nearly half a million web servers were vulnerable,
causing panic similar to that surrounding the Log4j vulnerability announcement. The
initial chaos eventually subsided, but research from Shodan found that in 2017—five

there are thousands of active sites across the Internet that may still be exposed to the
Heartbleed vulnerability.

The comparison is especially enlightening, however, in the ways Heartbleed differs from
the Log4j vulnerability. Exploitation of Heartbleed has not been as prolific as Log4j in
large part because the Heartbleed exploit matured slowly, with malicious actors taking
longer to weaponize iterations, allowing security response teams to keep pace. In short,
Heartbleed had a shallower maturation curve.

Log4j exploitation, by contrast, has evolved quickly, with the proliferation of cybercrime
groups dynamically altering the vulnerability. Log4j went from a general vulnerability to
a highly complex vulnerability with multiple exploitation pathways in the span of a single
week. A large-scale effort by threat actors enabled early exploitation of the vulnerability.
At that stage, malicious actors were essentially “throwing stuff at the wall to see what
sticks.” Within twenty-four hours of the disclosure, cryptominers and botnets had moved
in, increasing the maturation of the exploit and allowing more malicious and larger-scale
actors to move in.

Castles Built on Sand April 2023 @ securityandtechnology.org

24

https://www.openssl.org/news/secadv/20140407.txt
https://securityledger.com/2017/07/heartbleeds-heartburn-why-a-5-year-old-vulnerability-continues-to-bite/
https://securityledger.com/2017/07/heartbleeds-heartburn-why-a-5-year-old-vulnerability-continues-to-bite/

Complexity

To avoid wasting resources, ransomware as a service providers with affiliate groups
prefer mature, predictable exploits that are tried and tested. As a result, Log4j went from
a general exploit to a highly complex vulnerability leveraged by ransomware groups and
other, more prolific, cybercriminal groups in a single week, with threat actors like Conti,
Lockbit, and Nemesis Kitty weaponizing Log4j for ransomware.

Lastly, APTs started probing the web for Log4j vulnerability indicators. Microsoft’s threat
Korea, and Turkey as adversaries exploiting Log4j. In the months since the vulnerability’s
discovery, for example, Cisco Talos reported that it observed Lazarus, a North Korean

enterprise network, before deploying bespoke malware known as “VSingle" and
“YamaBot" to establish long-term persistent access.

APTs are harder to track and have far more resources than cybercrime groups, and

can therefore steepen the maturation curve faster than low-level cybercriminal actors.
This presents novel challenges to cybersecurity professionals, who must manage the
response to large-scale, low-complexity attacks and lower-scale, high-complexity attacks.

Vulnerability Maturation Curves: Log4Shell and Heartbleed vs. Pulse Connect Secure

Log4Shell
Heartbleed
Key
(number of A\ Discovery
viable exploits) -A"!**f Pulse Connect 3 Exploitation
Secure SSL-VPN
ﬂ s mms mmm mms mmm Emm | wm | m 7——_—%:
— AUGUST 2019
 MARCH 2019 CVE-2019-11510 seen
Researchers discovered critical exploited in the wild
vulnerabilities in Pulse Connect Secure T |
SSL-VPN. , 7
Time from Week 2 Week10 Week 6 Week14 Week 18 Week 22

discovery

Castles Built on Sand April 2023 @ securityandtechnology.org 25

https://www.microsoft.com/en-us/security/blog/2021/12/11/guidance-for-preventing-detecting-and-hunting-for-cve-2021-44228-log4j-2-exploitation/
https://blog.talosintelligence.com/lazarus-three-rats/
https://blog.talosintelligence.com/lazarus-three-rats/
https://techcrunch.com/2022/09/08/north-korea-lazarus-united-states-energy/amp/
https://techcrunch.com/2022/09/08/north-korea-lazarus-united-states-energy/amp/

Zooming in on Log4Shell and Hearthleed

/ Log4Shell

\DECEMBER2021 *JANUARY 2022

N Stateactors Ransomware attacks
NOVEMBER 2021 detected deploying facilitated by Log4Shell
Log4Shell first Log4Shell attacks openings in Internet-

reported / facing systems

Complexity DECEMBER 2021
(number of Sophos detects “hundreds of thousands”
viable exploits) | of Log4Shell remote execution attempts

APRIL 2014
Heartbleed used to steal /

sensitive .|nformat|on from Heartbleed
MARCH 2014 Community Health Systems
Heartbleed first detected /

|

APRIL 2014
Heartbleed used to steal sensitive
information from Canada Revenue Agency

Time from discovery Week 1 Week 2 Week 3 Week 4

As depicted in the above graph Zooming in on Log4Shell and Heartbleed, in the decade
since Heartbleed, the maturation curve for exploits of its kind has increased rapidly.
More and more groups are able to steepen the exploit maturation curve using novel
techniques that threaten to make exploits more complicated and harder to defend
against. As seen in the graph Vulnerability Maturation Curves: Log4Shell and Heartbleed
unauthenticated RCE vulnerability in an SSL-VPN product, illustrates a more traditional
exploit development process, where the patch and exploitation development cycle is
long enough that patching per current compliance guidelines can still be effective in
shoring up vulnerabilities. Together, these examples illustrate the rapid change in exploit
maturation over time. This emphasizes the need for increased focus intelligence and risk
driven vulnerability management rather than set time intervals.

Castles Built on Sand April 2023 @ securityandtechnology.org

Appendix 4: A Note on the
Cybersecurity Poverty Line

or resources to be able to effectively implement the cybersecurity measures they
need. Many businesses, especially small- and medium-sized ones, do not have full-
scale cybersecurity teams, and the vast majority of all businesses do not have threat
intelligence teams. Both kinds of in-house expertise would provide more proactive
cybersecurity. Instead, most businesses maintain a small group of network security
professionals who spend much of their time setting up and changing configurations,
rather than hunting for the next threat. These network security teams largely exist to
defend an organization’s network and essential infrastructure. Threat intelligence is a
more specialized field that requires putting vulnerabilities into context and hunting for
the next instance of a disastrous vulnerability, effectively putting organizations on the

offensive in terms of vulnerability management, rather than on the defensive.

One of the best arguments for a cultural shift away from defensive vulnerability
management is that exploits like Log4j have rapidly accelerating maturation curves (For

immediately exploit Log4j to deploy ransomware in all the companies that use the

library, because exploits require time, energy, and resources from cybercrime groups

to mature. As the maturation curve steepens, hostile actors weaponize and deploy
exploits in a matter of hours. If the maturation curve becomes shorter and steeper for all
actors and static scoring systems do not account for organizational context, a reactive
model of incident and vulnerability management becomes too risky. In such a situation,
organizations are forced to operate against the clock to remediate difficult vulnerabilities,
rather than spending time beefing up infrastructure against the next attack.

Castles Built on Sand April 2023 @ securityandtechnology.org

21

https://www.rapid7.com/blog/post/2019/08/23/why-the-security-poverty-line-is-our-industrys-responsibility-to-fix/

INSTITUTE FOR SECURITY AND TECHNOLOGY

info@securityandtechnology.org

Copyright 2023, The Institute for Security and Technology

	Introduction
	Shifting Open-Source Software Security to a Shared Responsibility Model
	Redoubling Support for Existing Secure Software Development Frameworks, Policies, and Licenses
	Reexamining Approaches to Vulnerability Management and Mitigation to Ensure They Account for Open-Source Software

	Conclusion
	Appendix 1: What Happened?
	Timeline
	Log4j Vulnerability Identification Timeline

	Exploitation
	Log4j Exploitation Timeline

	Using Log4Shell to Deliver Malware
	Barriers to Exploitation
	The Politics of Vulnerability Disclosure

	Appendix 2: How Did It Happen?
	What is Open-Source Software?
	The Economics of Open-Source Software
	What Happens When Things Go Wrong?

	Appendix 3: Shortening the Maturation Curve: The Log4j and Heartbleed Vulnerabilities
	Vulnerability Maturation Curves: Log4Shell and Heartbleed vs. Traditional Vulnerability
	Zooming in on Log4Shell and Heartbleed

	Appendix 4: A Note on the Cybersecurity Poverty Line

