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I.  INTRODUCTION 

 

In this essay, Nancy Leveson argues that using conservative techniques and avoiding unnecessarily 
complex software in critical functions in NC3 systems circumvented nuclear catastrophe in the past. 

Today, she concludes, a new approach is needed that avoids gratuitous complexity; emphasizes less not 

more technology; and improves NC3 systems by developing “more powerful, socio-technical and system 

engineering and risk management approaches that involve paradigm changes from the approaches that are 
no longer working. These are only now coming into existence and will need technical advances and 

refinement.” 

 
Nancy Leveson is a professor of Aeronautics and Astronautics and a professor of Engineering Systems at 

MIT. 

 

A podcast with Nancy Leveson Peter Hayes, and Philip Reiner on engineering NC3 systems is found here. 
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BY NANCY	LEVESON	
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Introduction 
As an engineer, I can only credibly comment on the engineering aspects of the NC3 problem. The overall 

solutions, however, will require the use of integrated sociotechnical approaches rather than social 

scientists and engineers working in isolation. There are two aspects of the problem that are the focuses 

of this paper: (1) preventing inadvertent detonation or launch of a nuclear weapon and (2) ability to 

intervene if a nuclear weapon is released either intentionally or unintentionally by ourselves or others, 

i.e., the missile defense problem. While there have been a few false alarms and alerts in NC3 systems in 

the past 50 years, none led to a loss, mostly because of the very conservative engineering approach 

taken to designing these systems. We need to resist the temptation to use sexy, new, and untrustworthy 

engineering techniques on NC3 systems of the future. I am worried that the temptation will be too great 

to resist. 

I have worked in the area of safety of complex engineered systems close to 40 years now, starting on 

what was, for its time, a very software-intensive defense system. Since then I have been teaching and 

creating new safety engineering approaches to ensure that such systems (both defense and commercial) 

can be trusted. More recently, I have become involved with security and, particularly, cyber security 

along with safety. In this paper, I will provide my perspective on the state-of-the-art in engineering for 

safety and security and what is needed going forward. Most important, I suggest some new technologies 

that I fear will be tried and lead to catastrophe, i.e., what should not be done.  

Why Have We Been So Successful in the Past? 

The most successful complex systems in the past were simple and used rigorous, straightforward 

processes. Prevention of accidental detonation of nuclear bombs, for example, used a brilliant approach 

involving three positive measures (the 3 I’s of isolation, incompatibility, and inoperability) and reliance 

on simple mechanical systems that could provide ultra-high assurance.1 Although there were a few 

incidents over a long period (e.g., Thule, Palomares, and a few others), inadvertent detonation did not 

occur in those cases. Introduction of software and more complex designs have been avoided in the 

design of the accidental detonation prevention strategies. 

The more recently introduced software-intensive systems have been much less reliable. Even there, 

however, some real-time control systems stand out. For example, the on-board Space Shuttle control 

software demonstrates that the nearly universal unreliability of software systems today is technically 

 

1 Nancy Leveson (1995), Safeware, Addison-Wesley Publishers, Boston, MA. 
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not necessary.2 The Space Shuttle software was, for its time, highly advanced and complex but it had an 

extraordinarily low level of software errors in flight. Appendix B provides some information about why it 

was so successful, considerably more than almost all software created today. 

More recently, our ability to provide highly trustworthy systems has been compromised by gratuitous 

complexity in their design and inadequate development and maintenance processes. For example, 

arguments are commonly made for using development approaches like X-treme Programming and Agile 

that eschew the specification of requirements before design begins. These nonsensical arguments state 

as a given or assumption that something has to be built before it is possible to determine what needs to 

be built. While this may be true for iPhone and web apps (although I doubt it), it is patently false for 

safety-critical applications. The careful system and requirements analysis of the past (as demonstrated 

on the Space Shuttle software, for example) is being discarded for sandbox approaches. Only the most 

rigorous and professional development practices should be used on NC3. This limitation implies that 

unassurable technologies like AI are prohibited and that the use of software is minimized if more highly 

assurable hardware can be used instead. We will need “back to basics” approaches to system and 

software engineering if the past high level of reliability and safety of NC3 systems is to be continued into 

the future.  

Providing high security is even more problematic. Again, only the most basic security techniques, such as 

providing an air gap to isolate critical systems, have been highly successful. The number of intrusions in 

today’s systems is appalling and unacceptable. Clearly what we are doing is not working.  

Is the DoD willing to eschew the use of sexy new but unassurable technology and strip away 

unnecessary complexity in the most crucial nuclear systems? Given the headlong plunge of the DoD 

toward more and more complexity, it seems doubtful. 

The other problem is that even if we were willing to do what is technically necessary to build simple, 

straightforward, and trustworthy systems, the losses that have and are occurring in today’s systems are 

as much a product of our inability to manage these systems as they are technological flaws. While we 

tend to focus on the technical factors involved in accidents/incidents, the major losses that are well 

investigated (for example, the Columbia Shuttle loss, Deepwater Horizon, and Fukushima) are found to 

be as much, if not more, a result of social and organizational factors (including inadequate controls and 

flawed decision making) than simply technical factors.3 The same is true for security-related losses. 

What will be needed to provide highly trustworthy NC3 systems in the future?  

 

2 Nancy Leveson (2013), “Software and the challenge of flight control,” in Roger Launius, James Craig, and John 

Krige (eds.) Space Shuttle Legacy: How We Did It/What We Learned , American Institute of Aeronautics and 

Astronautics (AIAA),  Reston VA. 

3 As an example, see Nancy Leveson (2007), ``Technical and managerial factors in the NASA Challenger and 

Columbia losses: Looking forward to the future,'' in Handelsman and Fleishman (eds.), Controversies in Science and 

Technology, Vol. 2: From Chromosomes to the Cosmos, Mary Ann Liebert, Inc., New Rochelle, NY. 
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Ensuring Safety and Security in NC3 

Avoiding unnecessary complexity and even compromises in functionality are going to be necessary. At 

the same time, we need to improve our engineering approaches to creating more complex, trustworthy 

systems. Even if we could potentially create technical systems that are worthy of high trust, how would 

we justify that confidence? Let’s look at safety first and then security. 

The safety analysis techniques typically used today are all 50 to 75 years old. These techniques do not 

work on the software-intensive, complex systems that we are building today. They are based on the 

obsolete assumption that accidents result from component failures. This assumption is no longer true. 

Today’s losses are as likely to be the result of system design flaws as component failure. Our technology 

today allows us to build systems that cannot be exhaustively tested and for which it is impossible to 

anticipate, understand, plan, and guard against all potential adverse system behavior before operational 

use. Engineers are increasingly facing the potential for “unknown unknowns” in the behavior of the 

systems they are designing.  

In addition, complexity is leading to important system properties (such as safety) not being related to 

the failure of individual system components but rather to the interactions among the components that 

have not failed or even malfunctioned. Accidents can occur due to unsafe interactions among individual 

components and subsystems that satisfy their requirements.4  

As one example, the loss of the Mars Polar Lander was attributed to noise (spurious signals) generated 

when the landing legs were initially deployed during descent.5 This noise was normal and expected and 

did not represent a failure in the landing leg system. The onboard software interpreted these signals as 

an indication that landing occurred (which the software engineers were told they would indicate) and 

shut the engines down prematurely, causing the spacecraft to crash into the Mars surface. The landing 

legs and the software performed correctly—as specified in their requirements, that is, neither “failed”—

but the accident occurred because the system designers did not account for all interactions between the 

leg deployment and the descent-engine control software.  

Another example occurred when some Navy aircraft were ferrying missiles from one point to another. 

One pilot executed a planned test by aiming at the aircraft in front (as he had been told to do) and firing 

a dummy missile. Apparently nobody knew that the “smart” software was designed to substitute a 

different missile if the one that was commanded to be fired was not in a good position. In this case, 

there was an antenna between the dummy missile and the target, so the software decided to fire a live 

missile located in a different (better) position instead. What aircraft component(s) failed here? We 

cannot even use our usual excuse, which is to blame it on the human operator. The pilot did exactly as 

he had been instructed to do. In fact, even when there is “operator error,” it is usually the result of our 

designing systems in which an operator error is inevitable and then blaming the results on the operator 

rather than the designer. 

 

4 Nancy Leveson (2012), Engineering a Safer World, MIT Press, Cambridge MA. 

5 Jet Propulsion Laboratory Special Review Board (2000), Report on the loss of the Mars polar lander and deep 

space 2 missions, NASA JPL, March. 
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Engineering approaches used in the past (and currently) to deal with failure-related accidents have no 

impact on these “system interaction” accidents. There are two ways to potentially avoid them: (1) 

reduce the complexity in our system designs to the point where they may be unable to achieve the 

mission goals and those goals will have to be curtailed more than leaders are willing to do or (2) reduce 

complexity as much as is feasible along with developing and using much more powerful analysis and 

design techniques. The second approach seems the most realistic, and it is the one I personally have 

adopted in my research. 

The more powerful analysis techniques we are developing are becoming widely and successfully used on 

the autonomous systems in automobiles and increasingly on commercial aircraft today, although only 

starting to be used in defense. These tools require making fundamental engineering paradigm changes 

and have met with resistance. But in the automotive and aviation domains, there is no other choice. 

Automobiles today contain over 100 million lines of software. Compare that to our most modern 

military aircraft, which probably contain between 15 and 20 million lines of code, which of course is still 

a significant amount. Other industries have been even more resistant to change.  

Why are new tools not developed and used more? Making progress involves a paradigm change from 

the way engineering is done today. Thomas Kuhn analyzed the difficulty engineering and science has in 

accepting paradigm changes.6 We need to overcome this resistance if we are to create highly 

trustworthy NC3 systems. Current tools are based on paradigms that just do not stretch to the needs of 

modern systems. Such paradigm changes do not include introducing technologies, such as AI, for which 

trustworthiness is not currently (and in the foreseeable future) possible despite using new analysis and 

design approaches. 

What types of paradigm changes are necessary? Because the nature of accidents is changing as our 

engineering technology changes and system complexity increases, our models and understanding of the 

cause of accidents need to change. This will require a change to the underlying theoretical basis for 

safety and security engineering and for managing critical systems.  

Traditionally, accidents/losses have been conceived as resulting from chains of failure events. This 

model is no longer adequate and needs to be expanded to include component and subsystem 

interaction accidents and not just failures. The traditional approaches to safety engineering are based on 

reliability theory; safety is essentially equated with the reliability of the system components. This 

assumption about the cause of losses is no longer true. New technology and increasing complexity in our 

designs require a change in how accident causality is perceived and losses prevented. The change I have 

suggested uses System Theory, although other approaches may be possible. The bottom line is that we 

cannot continue to base safety and trustworthiness on assumptions that no longer hold just because we 

are resistant to change.  

System theory was created after World War II to deal with the new technology and complexity in our 

engineered systems. It also arose in biology, where the interconnections and interdependencies of the 

human body also created a need for a paradigm change to make significant progress.7 Before this time, 

 

6 Thomas Kuhn (1962), The Structure of Scientific Revolutions, University of Chicago Press. 

7 Ludwig von Bertalanffy (1969), General Systems Theory: Foundations, New York: Braziller; and Norbert Weiner 

(1965), Cybernetics, MIT Press 
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complexity was handled in science and engineering by using analytic decomposition, i.e., breaking 

systems into their components, analyzing the components independently, and then combining the 

results to evaluate and understand the behavior of the system as a whole. The physical or functional 

components are assumed to interact in direct and known ways. For example, if the weight of a complex 

object is the analysis goal, the separate pieces may be weighed and the result combined to get the 

system weight. As another common example, the system reliability is usually measured by evaluating 

the reliability of the individual components and then the component reliabilities are combined 

mathematically to evaluate the system reliability. Safety is usually assumed to be simply a combination 

of the component reliabilities. 

The success of this type of decompositional or reductionist approach relies on the assumption that the 

separation and individual analysis does not distort the phenomenon or property of interest. More 

specifically, the approach works if: 

• Each component or subsystem operates independently. If time-related events are modeled, 

then they are independent except for the immediately preceding and following events. 

• Components act the same when examined separately (singly) as when they are playing their 

part in the whole. 

• Components and events are not subject to feedback loops and other indirect interactions. 

• The interactions among the components or events can be examined pairwise and combined into 

a composite value. 

Sophisticated levels of coupling between components violate these assumptions. If these assumptions 

are not true, which is the case for complex engineered systems today, including most NC3 systems, then 

the simple composition of the separate analyses will not accurately reflect the value for the system as a 

whole. 

The failure events also must be assumed to be stochastic8 for probabilities or likelihood to be 

determined. Unfortunately, software and humans do not satisfy this assumption. In addition, complexity 

is leading to important system properties (such as safety) not being related to the behavior of individual 

system components but rather to the interactions among the components, as noted above. Accidents 

can occur due to unsafe interactions among components that have not failed and, in fact, satisfy their 

requirements. That is, the components can be 100% reliable but the system can be unsafe. 

 Note that so-called “systems of systems” are no different than any other system. All systems are 

abstractions imposed by the observers. As such, the boundary around systems can be drawn and 

redrawn as appropriate and necessary to achieve the immediate goals. All systems are composed of 

other “systems” (which are, from that viewpoint, seen as subsystems), where most of these subsystems 

may already exist. To wit, the concept of a “system” is recursive and adaptive. Dealing with “systems of 

systems” requires no new concepts or approaches than are needed to handle any system. But we need 

new approaches to engineer and operate all complex systems. 

 

8 Something is stochastic if it can be described by a probability distribution or pattern that may be analyzed 

statistically to understand average behavior or an expected range of behavior but may not be predicted precisely. 
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System theory as used in engineering was created after World War II to deal with the increased 

complexity of the systems starting to be built at that time.9 It was also created for biology in order to 

successfully understand the complexity of biological systems.10 In these systems, separation and analysis 

of separate, interacting components (subsystems) distorts the results for the system as a whole because 

the component behaviors are coupled in non-obvious ways.  The first engineering uses of these new 

ideas were in the missile and early warning systems of the 1950s and 1960s.  

Some unique aspects of System Theory are as follows: 

• The system is treated as a whole, not as the sum of its parts. You have probably heard the 

common statement: “the whole is more than the sum of its parts.” 

• A primary concern is emergent properties (see Figure 1), which are properties that are not in the 

summation of the individual components but “emerge” when the components interact. 

Emergent properties can only be treated adequately by taking into account all their technical 

and social aspects. Safety and security and most other important system properties, including 

trustworthiness, are emergent. 

• Emergent properties arise from relationships among the parts of the system, that is, by how 

they interact and fit together.  

 

      

Figure 1: Emergent properties in system theory 

If emergent properties arise from individual component behavior and from the interactions among 

components, then it makes sense that controlling emergent properties, such as safety, security, 

maintainability, and operability, requires controlling both the behavior of the individual components and 

the interactions among the components. We can add a controller to the figure to accomplish this goal. 

 

9 Basic introductions include Peter Checkland (1981), System Thinking, System Practice, John Wiley & Sons, and 

Gerald Weinberg (1075), An Introduction to General Systems Thinking, John Wiley & Sons. Wiener introduced the 

early term “cybernetics,” which is now been supplanted by the term “System Theory,” in Norbert Wiener (1965), 

Cybernetics: or Control and Communications in the Animal and the Machine, 2nd Edition, MIT Press, Cambridge, 

MA. 

10 Ludwig Von Bertalanffy (1969), General System Theory, Braziller, New York. 
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The controller provides control actions on the system and gets feedback to determine the impact of the 

control actions. In engineering, this is a standard feedback control loop.  

The controller enforces constraints on the behavior of the system. Example safety constraints might be 

that aircraft or automobiles must remain a minimum distance apart, pressure in deep water wells must 

be kept below a safe level, aircraft must maintain sufficient lift to remain airborne unless landing, toxic 

substances must never be released from a plant, and accidental detonation or launch of weapons must 

never occur.            

 
Figure 2: Controllers and controls can control emergent properties 

Control is interpreted broadly and, therefore, includes everything that is currently done in safety 

engineering plus more. For example, component failures and unsafe interactions may be controlled 

through design, such as using redundancy, interlocks, barriers, or fail-safe design. Safety may also be 

controlled through process, such as development processes, manufacturing processes and procedures, 

maintenance processes, and general system operating processes. Finally, safety may be controlled using 

social controls including government regulation, culture, insurance, law and the courts, or individual self-

interest. Human behavior can be partially controlled through the design of the societal or organizational 

incentive structure or other management processes. 

To model complex sociotechnical systems requires a modeling and analysis technique that includes both 

social and technical aspects of the problem and allows a combined analysis of both. Figure 3 shows an 

example of a hierarchical safety control structure for a typical regulated industry in the United States. 

International controllers may be included. Notice that the operating process (the focus of most hazard 

analysis) in the lower right of the figure makes up only a small part of the safety control structure. There 

are two basic hierarchical control structures shown in Figure 3—one for system development (on the 

left) and one for system operation (on the right)—with interactions between them. Each level of the 

structure contains controllers with responsibility for control of the interactions between and behavior of 

the level below. Higher level controllers may provide overall safety policy, standards, and procedures 

(downward arrows), and get feedback (upward arrows) about their effect in various types of reports, 

including incident and accident reports. The feedback provides the ability to learn and to improve the 

effectiveness of the safety controls.  
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Manufacturers must communicate to their customers the assumptions about the operational 

environment in which the original safety analysis was based, e.g., maintenance quality and procedures, 

as well as information about safe operating procedures. The operational environment, in turn, provides 

feedback to the manufacturer and potentially others, such as governmental authorities, about the 

performance of the system during operations. Each component in the hierarchical safety control 

structure has responsibilities for enforcing safety constraints appropriate for that component, and 

together these responsibilities should result in enforcement of the overall system safety constraints.      

   Figure 3: A generic safety control structure 

 Note the use of the term “control” does not imply a rigid command and control structure. Behavior is 

controlled not only by engineered systems and direct management intervention, but also indirectly by 
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policies, procedures, shared value systems, and other aspects of the organizational culture. All behavior 

is influenced and at least partially “controlled” by the social and organizational context in which the 

behavior occurs. Engineering this context can be an effective way to create and change a safety culture, 

i.e., the subset of organizational or social culture that reflects the general attitude about and 

approaches to safety by the participants in the organization or society [13]. Formal modeling and 

analysis of safety must include these social and organizational factors and cannot be effective if it 

focuses only on the technical aspects of the system. As we have learned from major accidents, 

managerial and organizational factors and often governmental controls (or lack of them) are as 

important as technical factors in accident causation and prevention. For space reasons, Figure 3 

emphasizes the high-level components of a safety control structure and not their detailed design. Each 

can be quite complex. For example, the operating process (lower-right-hand box) would include all the 

physical parts of an NC3 system.  

 Figure 4 shows the basic form of the interactions between the levels of the control structure, where the 

controller imposes control actions on the controlled process.  The standard requirements for effective 

management—assignment of responsibility, authority, and accountability—are part of the control 

structure design and specification.      

                                         

                                                                                                  

 

                               Figure 4. The basic building block for a safety control structure   

 

The importance of feedback becomes apparent here. In engineering, every controller must contain a 

model of the controlled process in order to provide effective control. For human controllers, this model 

is usually called a mental model. This process model or mental model includes assumptions about how 

the controlled process operates and the current state of the controlled process. It is used to determine 

what control actions are necessary to keep the system operating effectively. 

Accidents in complex systems often result from inconsistencies between the model of the process used 

by the controller and the actual process state, which results in the controller providing unsafe control 

actions. For example, the autopilot software thinks the aircraft is climbing when it really is descending 

and applies the wrong control law; a military pilot thinks a friendly aircraft is hostile and shoots a missile 

at it; the software thinks the spacecraft has landed and turns off the descent engines prematurely; or 
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the early warning system thinks the country has been targeted and launches an interceptor at a friendly 

target. Note that it does not matter, such as in the last example, whether the incorrect process model 

was a result of an unintentional or intentional cause so that security is handled in the same way. The 

Stuxnet worm in the Iranian reactor program is an example. The worm made the controller’s process 

model think that the centrifuges were spinning slower than they were and the controller reacted by 

sending “increase speed” commands to the centrifuges, wearing them out prematurely. 

Part of the challenge in designing an effective safety control structure is providing the feedback and 

inputs necessary to keep the controller’s model of the controlled process consistent with the actual 

state of the controlled process. An important component in understanding accidents and losses involves 

determining how and why the controls may be ineffective in enforcing the safety constraints on system 

behavior; often this is because the process model used by the controller was incorrect or inadequate in 

some way.  

To apply system theory to safety, a new accident causality model is required that extends what is currently 

used. STAMP (System-Theoretic Accident Model and Processes) expands the traditional model of causality 

beyond a chain of directly-related failure events or component failures to include more complex processes 

and unsafe interactions among system components.11 In STAMP, safety and security are treated as a 

dynamic control problem rather than a failure prevention problem. No causes are omitted from the 

STAMP model, but more are included and the emphasis changes from preventing failures to enforcing 

constraints on system behavior. Some advantages of using STAMP are as follows: 

• It applies to very complex systems because it works top-down rather than bottom up. 

• It includes software, humans, organizations, safety culture, etc., as causal factors in accidents 

and other types of losses without having to treat them differently or separately. 

• It allows creating tools, such as STPA, accident analysis (CAST), identification and management 

of leading indicators of increasing risk, organizational risk analysis, etc. These tools have been 

shown to be much more powerful and effective in both analytical and empirical evaluations. 

 

The goal of this paper is not to sell this particular model but to argue that we can add new technology 

and complexity to our NC3 systems, but a paradigm change is going to be needed. Making incremental 

small improvements in current approaches or simply creating new names for the old approaches that 

failed (a favorite of researchers and others) and pretending the new name will somehow magically make 

it work better is not going to allow improvements in NC3 system trustworthiness. 

An example of the use of the new system-theoretic approach on the safety analysis of the new U.S. 

Ballistic Missile Defense System is provided in Appendix A. 

As alluded to above, security is also an emergent property. The primary approach to cybersecurity today 

is intrusion prevention and detection, implemented by performing various types of threat analysis. The 

goal is to identify the threats and prevent them by identifying when they might result in intrusions and 

trying to prevent such intrusions. This approach is clearly not working given the enormous number of 

intrusions that are occurring. In addition, the focus in cybersecurity has been on information security. 

But the major problem in NC3 is mission assurance, not information security (although it admittedly is a 

 

11 Nancy G. Leveson, Engineering a Safer World, MIT Press (2012), Cambridge MA. 
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part of the problem). In fact, security can and should be treated in the same way as safety. Consider the 

following definitions:  

Definition: Safety is freedom from losses. 

Definition: An accident/mishap is any undesired or unplanned event that results in a loss, as defined 

by the system stakeholders.  

Losses may include loss of human life or injury, equipment or property damage, environmental 

pollution, mission loss (non-fulfillment of mission), negative business impact (e.g., damage to 

reputation, product launch delay, legal entanglements), nuclear war, etc. There is nothing in the 

definition that distinguishes between inadvertent and intentional causes. In fact, the definition does not 

limit the causes specified. The current focus in security on intrusions and information loss, therefore, 

can be supplemented in the mission assurance world with a focus on preventing losses. Systems need to 

be designed so that even if an enemy penetrates a system boundary (which they will), they cannot do 

anything harmful. The same approach to preventing a loss can be used, for example, if an operator 

inadvertently issues a command to launch a missile or if the operator was tricked into doing it by some 

type of intrusion. The first is considered a safety problem and the second a security problem, but the 

same analysis and design approaches can be used to prevent them. 

This change in the way that cyber security is treated is again a radical paradigm change from what is 

done today. In Air Force evaluations, it has been found to be much more effective.12 But such changes 

require a willingness to make them. 

Conclusions and a Way Forward 

We have avoided nuclear catastrophe by using very conservative techniques and avoiding software in 

critical functions. That will not be possible going forward. Another approach, probably involving a 

paradigm change, is going to be necessary.  

In this paper I have argued that we need to:  

• Avoid unnecessary complexity. Strip systems to their basics and use rigorous and careful 

development processes. 

• Emphasize less technology, not more: throwing technology at the problem will make it worse. In 

particular, do not use new technology like AI for which it is impossible to provide adequate 

trust. In almost all cases, it is not needed but used because it is “sexy” and fun and people, not 

understanding it, assume it will provide miracles. 

• Improve NC3 systems not by pretending that our current technology is perfect or even 

adequate, but by acknowledging the limitations. Instead, develop more powerful, socio-

technical and system engineering and risk management approaches that involve paradigm 

changes from the approaches that are no longer working. These are only now coming into 

existence and will need technical advances and refinement.  

 

12 William Young, dissertation 
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APPENDIX A: AN EXAMPLE APPLICATION OF STPA TO A BALLISTIC MISSILE INTERCEPT SYSTEM 

STPA is a new, more powerful hazard analysis method based on STAMP. In 2005, soon after it was 

invented and in one of its first applications to a real system, STPA was used to ensure that inadvertent 

launch would not occur in the U.S. Ballistic Missile Intercept System.13 While safe engineering efforts 

(including STPA) are most effective when begun early in the system life cycle, they may be done later for 

various reasons.  

In this case, the Missile Defense Agency (MDA) used STPA to characterize the residual safety risk of the 

Ballistic Missile Defense System (BMDS) right before deployment and field test. As described by Pereira, 

Lee, and Howard,13 BMDS was developed as a layered defense to defeat all ranges of threats in all 

phases of flight (boost, mid-course, and terminal). It is comprised of a variety of components including 

sea-based sensors on the Aegis platform, upgraded early warning radars (UEWR), the Cobra Dane 

Upgrade (CDU), Ground-based Midcourse Defense (GMD) Fire Control and Communications (GFC/C), a 

Command and Control Battle Management and Communications (C2BMC) Element, and Ground-based 

interceptors (GBI). Future block upgrades were originally planned to introduce additional elements into 

the BMDS, including Airborne Laser (ABL) and Terminal High Altitude Area Defense (THAAD). 

While each of the elements of this integrated and very complex system had active safety programs, the 

complexity and risk introduced by their integration as a single system went beyond what is possible to 

analyze using traditional hazard analysis techniques. Some of these elements involved upgrades to 

already fielded systems. Many of them had historically been developed independently.  

The STPA analysis is performed on a control structure, as described in the main part of this paper. 

Clearly, the actual control structure cannot be shown, but a fictional one is used (FMIS or Fictional 

Missile Intercept System) as an example. Similar to programs within the real BDMS, FMIS uses a hit-to-

kill interceptor that destroys incoming ballistic missiles through force of impact. The FMIS control 

structure is shown in Figure A.1. 

 

 

 

 

 

 

 

 

 

13 Steven Pereira, Grady Lee, and Jeffrey Howard 2006). “A System-Theoretic Hazard Analysis Methodology for a 

Non-advocate Safety Assessment of the Ballistic Missile Defense System,” Proceedings of the 2006 AIAA Missile 

Sciences Conference, Monterey, CA, November 14-16. 
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Figure A.1: The control structure of the fictional missile intercept system (FMIS) 

 

     In the STPA analysis, the system is viewed as a collection of interacting loops of control. For example, 

command authorities exert control over system operators by issuing guidance, providing training, and 
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establishing tactics, techniques, and procedures (TTPs). Command authorities receive feedback in the 

form of reports and performance during training exercises. Operators exert control over software by 

inputting commands, and they receive feedback from displays and aural alerts. Software exerts control 

over other software and hardware by sending messages and commands and receives feedback in the 

form of measured values and status information. Safety is an emergent property of the system, arising 

from the interactions among software, hardware, and humans. Safety is maintained by placing 

constraints on the behavior of the system’s components. Mishaps occur (1) when the constraints are 

insufficient to maintain safety and (2) when the controls present in the system are inadequate to 

enforce the safety constraints.  

STPA, in this use, provided information about where constraints may be insufficient to maintain safety 

(prevent identified losses), when controls may be inadequate to enforce safety constraints, and how 

mitigations can be developed to reduce safety risk with minimal impact on the system’s design and 

operations. 

Details about the analysis and how it is performed are beyond the scope of this paper. But an example 

of the types of problems found is instructive. Again, the hazard is inadvertent launch. Each of the control 

actions (see Figure A.1) was first analyzed to identify under what context it could lead to the hazard and 

then the scenarios are identified that could lead to that hazardous context and control action. For 

example, consider the control action “Fire Enable” from the Fire Control system to the Launch Station. 

Clearly that control action could potentially be related to an inadvertent launch if given in a specific 

context, e.g., when a real threat does not exist. The goal of the analysis is to identify why “Fire Enable” 

might be given without the existence of a legitimate threat. 

The analysis starts with a control structure that is used to carry out an organized and rigorous 

identification of unsafe control actions and the context in which these control actions become unsafe. In 

this example, we will not describe this structured process, but instead start with the Unsafe Control 

Action: Fire Enable issued when there is no threat. If the Fire Enable command is provided to a launch 

station when there is no real threat, the launch station will transition to a state where it accepts 

interceptor tasking and can progress through a launch sequence. In combination with other incorrect or 

mistimed control actions, this command could lead to an inadvertent launch.  

After identifying unsafe control actions and the context in which they become unsafe, the next step is to 

identify the scenarios that could lead to the unsafe control action generation so that the scenarios can 

be eliminated from the design. The following are examples of the types of scenarios described by the 

people that did the analysis:14 

“The Fire Control computer is intended to send the Fire Enable command to the Launch Station 

upon receiving a Weapons Free command from an FMIS operator and while the fire control 

system has at least one active track. According to the requirements and design specifications, 

the handling of the Weapons Free command is straightforward. Although the specification 

requires an “active” track, it is more difficult to determine what makes a track active. Interviews 

with the development staff clarified that activity criteria are specified by the FMIS operators 

according to their operational procedures. The software supports declaring tracks inactive after 

 

14 Pereira, Lee, Howard, op cit. 
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a certain period with no radar input, after the total predicted impact time for the track, and/or 

after a confirmed intercept. It appears one case was not well considered: if an operator 

deselects all of these options, no tracks will be marked as inactive. Under these conditions, the 

inadvertent entry of a Weapons Free command would send the Fire Enable command to the 

launch station immediately, even if there were no threats to engage currently tracked by the 

system.” 

“The FMIS system undergoes periodic system operability testing using an interceptor simulator 

that mimics the interceptor flight computer. Hazard analysis of the system [using STPA] 

identified the possibility that commands intended for test activities could be sent to the 

operational system. As a result, the system status information provided by the launch station 

includes whether the launch station is connected only to missile simulators or to any live 

interceptors. If the Fire Control computer detects a change in this state, it will warn the operator 

and offer to reset into a matching state. However, there is a small window of time before the 

launch station notifies the Fire Control component of the change during which the Fire Control 

software might send a Fire Enable command intended for test to the live launch station.” 

“The fire control system may identify a potential threat and send the Fire Enable command. If 

that threat is later determined to be friendly, then the Fire Control Computer will send a Fire 

Disable command. The commands are sent on different communication channels. The Fire 

Enable command could potentially be delayed enough that the two commands are received in 

the opposite order than they were sent and the Launch Station would think that the Fire Enable 

command was active.” 

     Note that in the first two examples, neither of the causal factors identified by the assessment 

involved component failures. In both cases, all the components involved were operating exactly as 

intended; however, the complexity of their interactions led to unanticipated system behavior (often 

called “unknown unknowns” by engineers) and unsafe component requirements. Component failure 

can, of course, be a cause of inadequate control over a system’s behavior, and STPA does include those 

possibilities. However, the traditional hazard analysis techniques used today are based on an 

assumption that accidents are caused by component failures and thus consider only failure events and 

not the effects of complex system interactions. The third example could be caused by either a 

component failure, degraded performance of a component, or once again a design error that does not 

involve any failure. 

APPENDIX B: WHY THE SPACE SHUTTLE SOFTWARE WAS SO GOOD  

A mythology has arisen about the Space Shuttle software with claims being made about it being “perfect 

software” and “bug-free” or having “zero-defects,” all of which are untrue. But the overblown claims 

should not take away from the remarkable achievement by those at NASA and its major contractors 

(Rockwell, IBM, Rocketdyne, Lockheed Martin, and Draper Labs) and smaller companies such as 

Intermetrics (later Ares), who put their hearts into a feat that required overcoming what were 

tremendous technical challenges at that time. They did it using discipline, professionalism, and top-flight 

management and engineering skills and practices. And the results surpass what has been possible to 

achieve more recently on similar challenges. 
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There can always be differing explanations for success (or failure) and varying emphasis placed on the 

relative importance of the factors involved. Personal biases and experiences are difficult to remove from 

such an evaluation. But most observers agree that the process and the culture were important factors in 

the success of the Shuttle software as well as the strong oversight, involvement, and control by NASA. 

1. Oversight and Learning from the Past: NASA learned important lessons from previous spacecraft 

projects about the difficulty and care that need to go into the development of the software. These 

lessons include that software documentation is critical, verification must be thorough and cannot be 

rushed to save time, requirements must be clearly defined and carefully managed before coding 

begins and as changes are needed, software needs the same type of disciplined and rigorous 

processes used in other engineering disciplines, and quality must be built in from the beginning. By 

maintaining direct control of the Shuttle software rather than ceding control to the hardware 

contractor and, in fact, constructing their own software development “factory,” NASA ensured that 

the highest standards and processes available at the time were used and that every change to 

human-rated flight software during the long life of the Shuttle was implemented with the same 

professional attention to detail. 

2. Development Process: The development process was a major factor in the software success. 

Especially important was careful planning before any code was written, including detailed 

requirements specification, continuous learning and process improvement, a disciplined top-down 

structured development approach, extensive record keeping and documentation, extensive and 

realistic testing and code reviews, detailed standards, and so on.  

3. The Software Development Culture: Culture matters. The challenging work, cooperative 

environment, and enjoyable working conditions encouraged people to stay with the project. As 

those experts passed on their knowledge, they established a culture of quality and cooperation that 

persisted throughout the program and the decades of Shuttle operations and software maintenance 

activities. 

With the increasing complexity of NC3 and the enormous amount of software that is or will be included 

in such systems, a lesson that can be learned is that we will need better system engineering, including 

system safety engineering, than is usually practiced today. NASA maintained control over the system 

engineering and safety engineering processes in the Shuttle and employed the best technology in these 

areas at the time. The two Shuttle losses are reminders that safety involves more than simply technical 

prowess, however, and that management can play an important role in accidents and must be part of 

the system safety considerations. In addition, our system and safety engineering techniques need to be 

upgraded to include the central role that software plays in our complex defense systems. Unfortunately, 

the traditional hazard analysis techniques used in the Shuttle do not work very well for the more 

software-intensive systems being engineered today and will need to be considerably changed and 

improved.15 

Beyond these lessons learned, some general conclusions and analogies can be drawn from the Shuttle 

experience to provide guidance for the future. One is that high quality software is possible but requires 

a desire to do so and an investment of time and resources. Software quality may be given lip service in 

 

15 Nancy Leveson (2012), Engineering a Safer World, MIT Press. 
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many industries, where often speed and cost are the major factors considered, quality simply needs to 

be “good enough,” and frequent corrective updates are the norm. 

Some have suggested that the unique factors that separated the Shuttle from other software 

development projects are that there was one dedicated customer, a limited problem domain, and a 

situation where cost was important but less so than quality.16 But even large government projects with a 

single government customer and large budgets have seen spectacular failures in the recent past such as 

new IRS software,17 several attempted upgrades to the Air Traffic Control system,18 a new FBI system,19 

and even an airport luggage system.20 That latter baggage system cost $186,000,000 for construction 

alone and never worked correctly. The other cited projects involved, for the most part, at least an order 

of magnitude higher costs than the baggage system and met with not much more success. In all of these 

cases, enormous amounts of money were spent with little to show for them. They had the advantage of 

newer software engineering techniques, so what was the significant difference? 

One difference is that NASA maintained firm control over and deep involvement in the development of 

the Shuttle software. They used their experience and lessons learned from the past to improve their 

practices. Other government projects have ceded control to contractors, often with conflicts between 

quality and other goals. With the current push to privatize the development of space vehicles, it will be 

interesting to see whether the lesser oversight and control lead to more problems in the future with 

manned spaceflight. 

In addition, software engineering has moved in the opposite direction from the process used for the 

Shuttle software development, with requirements and careful pre-planning relegated to a less 

important position than starting to code (e.g., Agile and X-treme programming). Strangely, in many 

cases, a requirements specification is seen as something that is generated after the software design is 

complete or at least after coding has started. Many of these new software engineering approaches are 

being used by the firms designing defense systems today.  

Why has it been so difficult for software engineering to adopt the disciplined practices of the other 

engineering fields? There are still many software development projects that depend on cowboy 

programmers and “heroism” and less than professional engineering environments. How will the DoD 

and international entities ensure that the private companies building more software-intensive NC3 

systems instill a successful culture and professional environment in their software development groups? 

Ironically, many of the factors that led to success in the Shuttle software were related to limitations of 

computer hardware in that era, including limitations in memory that prevented today’s common 

“requirements creep” and uncontrolled growth in functionality as well as requiring disciplined control 

 

16 Charles Fishman (1996), “They Write the Right Stuff,” Fast Company, December. 

17 Anne Broache (2007), “IRS Trudges on with Aging Computers,” CNET News, April 12,  

http://news.cnet.com/2100-1028_3-6175657.html 

18 Mark Lewyn (1993), “Flying in Place: The FAA’s Air Control Fiasco,” Business Week, April 26, pp. 87, 90 

19 Dan Eggan and Griff Witte (2006), “The FBI’s Upgrade That Wasn’t,” The Washington Post, August 18, 

http://www.washingtonpost.com/wp-dyn/content/article/2006/08/17/AR2006081701485.html 

20 Kirk Johnson (2005), “Denver Airport Saw the Future. It didn’t work,” New York Times, August 27. 
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over the system requirements. Without the physical limitations that impose discipline on the 

development process, how can we impose discipline on ourselves and our projects? 

The overarching question is: How will we ensure that the hard learned lessons in the past are conveyed 

to those designing future systems and that we are not, in the words of Santayana, condemned to repeat 

the same mistakes? 

 

III. ENDNOTES 

 

IV.  TECHNOLOGY FOR GLOBAL SECURITY INVITES YOUR RESPONSE 

Technology for Global Security invites your responses to this report. Please send responses to: 

info@tech4gs.org. Responses will be considered for redistribution to the network only if they include the 
author’s name, affiliation, and explicit consent 

 


